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SOREN KIER CHRISTENSEN. Linear Stochastic Differential

Equations on the Dual of a Countably Hilbert Nuclear Space

With Applications to Neurophysiology. (Under the direction

- / of Gopinath Kallianpur.)

) Properties of the Ornstein-Uhlenbeck on the dual of a

nuclear space are derived; stationarity and existence of

unique invariant measure is proved, Radon-Nikodym derivative

exhibited and the OU process is investigated for flicker

noise.

Existence and uniqueness of solutions to linear stochastic

differential equations on the dual of a nuclear space is

established, ana general conditions for the weak convergence

on Skorohod space of solutions are given. Moreover,

solutions are shown to be CADLAG semimartingales (for

* appropriate initial conditions).

* The results are applicable to solving stochastic partial

differential equations.

* Finally, the results are applied to giving a rigorous

*. - representation and solution of models in neurophysiology as

. well as to deriving explicit results for the weak

convergence of these solutions.
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CHAPTER I

INTRODUCTION AND MOTIVATION

Within the last six years a number of publications

concerning SJAs on the dual of a nuclear space have

appeared. In a series of these articles [101, [111, (121,

K. It8 has investigated special SDEs on the spaces

V'(- space of all tempered distributions) and .0'(- space

of all distributions), and other authors have studied

particular SDEs on more general dual nuclear spaces

including Y. Miyahara (231, and G. Kallianpur & R. Wolpert

(141.

Apart from its appealing probabilistic aspects research in

this area has been stimulated by applications to such

diverse fields as infinite particle systems in statistical

mechanics (Holley and Stroock, [81), chemical reaction

kinetics (P. Kotelenez, (171) and, most recently, to
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neurophysiology (G. Kallianpur & R. Wolpert, (141, (151).

The primary motivation for studying SDEs on the dual of a

nuclear space comes from the desire to solve stochastic

partial differential equations (SPDEs). Here, we shall

restrict attention to linear SPDEs.

Just as in the case of classical partial differential

equations there are basically two different approaches to

this problem:

I: Given a suitable partial differential operator (PDO)

D in d dimensions and a Wiener process Wt,x indexed by

time t > 0 and spatial points x e ad, find a process V

(indexed by t > 0 and x e ad) such that

dV(t,x) - DV(t,x)dt + dWt x

V(O,x) = VO(X)

The main problem with this approach is that even for a

very simple D a solution of this form may not exist (take

for example d - 2 and D = - I; see J.B. Walsh [291

section 10).

Therefore, inspired by the development of classical PDE

theory, one may try to look for generalized solutions

insteads

C .. * .........
* . . . - -. *-* .. C. - -*i.~C C~C ~ ~*a
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II: Given a suitable PDO D, a space I of Otest

functions"' and a '-valued Wiener process W (to be

defined), find a '-valued process =( tlt 0 such that

dIqt[+] J t[D+ldt + dWt[+]

- x[+]

-Countably Hilbert nuclear spaces (see Appendix) were

introduced by Gel'lfand as generalizations of the Schwartz

space YO1fd) and therefore seem appropriate as a choice

for .

Perhaps, one iay wonder if it is not sufficient, for all

practical purposes, to consider the case -V/Id).

However, as pointed out in [141, this is far from the

case; even in applications (such as neurophysiology, where

a suitable I may be a space of infinitely differentiable

functions on a compact Riemannian manifold) there is no

guarantee that the relevant space of test functions can be

accomodated as a subspace of 9(Ntd).

Until now, no general theory has been developed for

stochastic partial differential equations on the dual of a

countably Hilbert nuclear space. Our primary objective

-here is to solve the following problems (see Appendix for

terminology):

....................................°.****\I

€ o""- *' " *' 2 '2 .**22'2""'-* o*-,* **2""'..-J' +.2'2"">", "•" , ."•"'' '"+'"- "', .•'. " '. ' "
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Let '- H.-.j' be a rigged Hilbert space. Let A : | 1

be linear and continuous. Let N - (Mt)t>0 be a '-valued

L2-semimartingale (to be defined) and let q be a

I'-valued random variable.

i) Give conditions on A assuring that the SDE on

d~t = A'Stdt + dt; o =

has a unique solution.

ii) The solution is, of course, a process on '• But

- qLOLq, and hence it is also relevant to ask whether

for some q > 0 t e q for all t e [0,0D) or at least all

t e [0,T] for some T > 0.

iii) Investigate the weak convergence of solutions; i.e.

loosely speaking, if the noise and the initial condition

converge weakly then does the solution also converge

weakly ?

Chapter III, which is the main chapter, is devoted to the

solution of these problems. In chapter IV we address our

second objective which is to suggest a new approach to

modelling neuronal behaviour via I'-valued SDEs, and to

illustrate how the weak convergence result from chapter

*" III can be useful in the context of modelling in

- neurophysiology.
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Special examples of solutions to one particular class of

I #-valued SDEs, namely the infinite-dimensional

Ornstein-Uhlenbeck equations, have been subject to study

by several authors (1231,[141,(81 and [291), and therefore

we shall commence by presenting a treatment of some of the

properties of the general Ornstein-Uhlenbeck process on

' (chapter II).

For the convenience of the reader we inc~lie an Appendix

presenting a definition and some basic properties of

countably Hilbert nuclear spaces.

A
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CHAPTER II

a- PROPERTIES OF THE '-VALUED ORNSTEIN-UHLENBECK PROCESS

In this chapter we shall investigate some of the

properties of the Ornstein-Uhlenbeck process on the dual

of a countably Hilbert nuclear space (see Appendix for

definition). Our interest in this particular process is

aroused mainly by a paper by Miyahara [231 and by its

recent applications in neurophysiology [14], [29].

However, the literature so far has dealt only with

particular examples of these Ornstein-Uhlenbeck

processes, and therefore a treatment of the general case

.seems appropriate. We shall discuss the issues of

stationarity, absolute continuity of the transition

measure wrt. to the invariant measure; and flicker noise.

However, first we must introduce some terminology:

% . %J. .- .-' '.% %" .% ' '..';" %'.i." . " " "%%% ." C " :.' ', - -. • " . "'," '.-'." ." .9, - '". '. . ' , 2.
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FI R~i .xssND NOTATION
UL.16". PRLIIAIES A

Let R be a real separable Hilbert space and let L be a

densely defined positive closed selfadjoint linear

operator on H satisfying:

. AUL 3r, > 0 : (I + L) is Hilbert-Schmidt on H.

Throughout the present chapter I will denote the countably

Hilbert nuclear space generated by (I + L) (see Appendix)

and $I will denote the strong dual of I while

(Ir<.,>)reR denotes the associated Hilbert chain.

Let m e I' and let Q Ix -) a be a strictly positive

continuous bilinear map. By the Kernel theorem for nuclear

. spaces we ha.e
9.

ii 3r2 > 0 302 > 0 v e I

Im(+Jm[4 + Q(+u1) < e2 11 11r 1111

I'-valued random variables and stochastic processes are

* defined in Appendix.

DMFINITION

A I'-valued process W - (Wt)t>O (defined on some

probability space) is called a '-valued Wiener process

with parameters m and Q iff
..



S

i) V * e : Vt[1 is a Gaussian process with mean

tm[] and covariance CovCWt[+,W5s[+]) - t s Q + +)

(ii) t -) Wt[ ] is continuous with probability one for

each + e

If W is a I'-valued Wiener process then (i) implies that

Wt4 - Wt3L wt2 - Wt1 for any t 4 > t 3 > t 2 > t> O;

i.e. a I'-valued Wiener process has independent

increments.

Let m and Q be as above. Then there exists a probability

space (O,FP) and a 1'-valued Wiener process W on

(.l,F,P) with parameters m and Q. In fact, if q > r1 + r2

then

W e C([OO¢)V q) P-a.s..

-The theorem was proved by K. It8 [12] for the case m - 0

and 4 0(R), whereas V. Perez-Abreu (241 has proved the

result for m - 0 and any I generated in the manner

considered here. The necessary alterations of the proof

when m # 0 are straight forward and therefore omitted.

tZ
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In the sequel we take all random variables and processes

to be defined on (.F,,P) which we assume to be complete.

Let be a I'-valued random variable and let
U

:, r,.. : 0 < s < tIV(P-null sets); t > 0

where W is a i'-valued Wiener process with parameters m

and Q.

Recall that a real stochastic process X is called

progressively measurable wrt. ( tt>O iff

(i) Xt is Yt-measurable V t > 0

and

(ii) V t > 0 : Cs,w) -) Xs(w); s e [Ot] is

,-q",., S (K)/AQ([ ,tjx t-measurable.

The assumptions on L imply that Lf C I and that L is

continuous on I (see proposition 111.1.13.). Let L' denote

the adjoint of L considered as a continuous linear

operator on

A f'-valued stochastic process (Tt)t > 0 is a

. solution to the SDE on

,%%
,- .%. . .. ,,..._%....... . -... ,........,.o -.... %, ,.,

-."" ' " " .' .- . U % .. r.
-

..
'

. UI ;U... " *U *U-" ", "U" -
"

U. "*- " U U- U
"

" " * '-"
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(1) d~t W -L'st dt + dW t; so-

1ff

(2) e * (I:~ t[*'Dt). is progressively measurable

wrt. "tto

and

(3) + ft 35 [-L[+Jds + Wl]

Moreover,, I is the unique solution if f for any other

I F-valued process (ft~t~o satisfying (2) and (3) we have

Al and selfadjointness of L on H imply the existence of a

CONS (j: j e 9) in H consisting of eigenvectors of L;

L~j - Y ;where 0 < ~~5. with co~ as n -

aD, and where +je I v j e a; see Appendix. Further, -L

is dissipative selfadjoint and closed on H and hence -L

generates a selfadjoint contraction semigroup (T t z t > 0)

on H and

Tt~j e xp(-Xjt)+j V j e n.

For each j e 8 let IJdenote the unique solution to the

real valued SDE



d Jdt + dWt EY

(4)

i.e..NJ is the one-dimensional Ornstein-Uhlenbeck process

(5) -e t [*j ] + It e- (t-S)m[+j.ds +

t 0% ts

e dW•, where
"to

:-V +j - sm[+J].

ILL"b -U

Suppose that satisfies

r3 _> o •r -3 <

Then the'equation (1) has a unique solution 1 (tt>0

given by

OD
o.

(6) t -

the series converging uniformly on [0,TI in the

Lq-topology (P-a.s.) for any T > 0 and any

q > (r1 + r2 lWr 3, where

* ,. . . .* * - -, . .* , * . . . . . .. . , ..x: : . . . ..S: • .. •,... . • . , . .. \ * . . . .*
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XJ is the solution to (4).

Moreover, I has the strict Markov property; i.e. t is

conditionally independent of T({is : s > t) given }

and I satisfies

'-e C([Oa), q) V q > (r1 + r2 ) r3 -

-The theorem was proved by G. Kallianpur and R. Wolpert

in [14). Their proof for the case where H = L2 (,&,'P) for

a -finite measure space (C,BP) and where

'(*., -a 2+(x)*(X)pdadx)

for some 6-finite measure p on RxL extends without

change to any real separable Hilbert space H and any

continuous bilinear operator Q on

If It is given by (6), then

Yt[,j] - (P-a.s.) V i e i,

i.e. Et[+j] is a one-dimensional Ornstein-Uhlenbeck

process. Therefore, and because of the formal similarity

between (1) and a one-dimensional Ornstein-Uhlenbeck

equation, we shall call (1tlt>o a !'-valued

Ornstein-Uhlenbeck process with parameters mQ and L.

.'
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Before proceeding to the investigation of the properties

of It. we need two more results:

- Let N e N and let P denote the orthogonal projection
tN

onto span(+j : i e {1,...,N)) in Lq; where
q > (r + r2 )vr 3 . Let (XN) :- (P t

Then XN is a E, valued process. Define, for any

stochastic processes Y -(Yt)t>O

Y: (YT] where T > 0.

Then XNT e C([0,T],J_ (P-a. s.) V T > 0 and weq) -

have:

II, 1 PROPOSITION

V T > 0 : XNT ==> fT on C([O,Tl _q).

PROOF:

By theorem 11.1.2., for each T > 0 we have

sup X NT - T T_q --- ) 0 (P-a.s.),
o<t<T tqN->

i.e. XN 'T converges P-a.a. to T in the topology of

C((I0TJ0.Lq). Hence

f(xNT)dP - f( T dP
09 N4aD

-S.
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for any bounded continuous f : C([O,TJl ) - R, by the

DCT.

Recall from Appendix that if +,# e then

OD

r 4 = J>°0 <*j>o n + y 2r V r e ft.

Note also that, by construction of , (I + Li)r is defined

on for any r e 2. By selfadjointness of (I + L) on

o= H we have for any +,# e and any rp e R

< (I + L)r- P+,(I + L)r - p #>p

< (I + L)r-P +,'j>o < (I + L)r- p  ,,J>o (I + 2p

i-1

CD

T <+, (I + L )rP j>o0 <#1,(I + L )r- p yo (1 + Xj 2p-

L..<+1 4'J>o <#t4~j>o (+ + 2
i-i

For any r,p e 3 there is a unique extension Fp of
r

(I + L)r- p to an isometric isomorphism Ir " 0 Ip"

v--~. 1 " .- ". '- & " ,'
-w/ i: -'- - --.- - ' - - . . ¢ J ... \.'*** . . 9. .-.-'.,-- .- .. -*'..- *.... -,-.,.-. ,-*...' '.., ,
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PROOF:

Let x e Ir and choose O: n e C I such that

ix - *nI r -) 0.

Then Onlnew is a Cauchy sequence in fro Now

|On - O r <#n - O, n - Om>r

< (I + L)r-Pq -O n), (I + L) r-P( - #n) >p

so ((I + L)r-p OnneE is Cauchy in 1p.

Let R denote its limit in 1p. We claim that I does not

depend on th.. approximating sequence (Ondnev. Indeed, let

"n be another sequence in Ir such that

Ix -- nr --- > 0. Let y denote the limit of

(I + L )r-P;n in I . Then

N - yp _~~ If - (I + L)r-Pnl +

I (I + L)r-P(On - An) 1tp + fy - (I L)r-Pr,'

Now, II - (I + L)r-p Onlp and Iy - (I + L)rP'np

both tend to zero as n -( ao by definition and

e a..'
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r-p 12 _nI~r
(I + L n  1(n2 ---)0,

(l L~-P*n - -Vn) p -r n->O

since *n - x and /n "> x in In as n -3o o.

Hence OR - yop = 0, showing that 2 is independent of the

approximating sequence *n -* x in r . Therefore, the

prescription

fro x -) FPx := lr (I + L)r - p *n in lp-.' n- co

defines a (linear) map FP : Ir - tp" Moreover,

-II + L)r- p n- -0 p o

but

(I + L)r-P *n lip H*nir -)' Ull
n-) CD

so IlXlr - If p and hence FP is isometric.

Since FP is obviously an extension of (I + L)r-p, it only

remains to show that FP is surjective:
r

- Let y Then x - Fry e•r and if yn---> y in ,

Let y 1P. pn-]*cD

where yn e 1, we have x - lir (I + L)p- r y n in Ir.
~n->cx)

Further, with xn :- (I + L)p- r yn we have
n n.

*w D~- ~*,u-**.*
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(I + L)r-pxn - yn" Hence y - FPx, and FP - (Fr)-l.n rr p

.b STATIONAITY AND ABSOLUTE CONTINUITY

In this section we shall show the existence of a unique

Gaussian invariant measure for equation (1) and

investigate the absolute continuity of the transition

measure of the Markov process wrt. the invariant measure.

For convenience we shall assume that XI > 0. Since

X < X 2 < ... this implies that X . > 0 V J.

We begin by showing that the series

OD a)
\ \ . + Xk 0+'+k)' +J>o <*+k>o

is absolutely convergent for any * e 1:

Let q > r + r

L. 1 i + Xk <'+J>o <*"k>o Q(+Jt+k~l

(D

J, k-1

by A2
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S- ,' jI2)- l<+'J>° <*'k>°l '2jr2  kl1r 2
* j i n 1CD r2 r2

.(2 l) 1<++ > 0 <4'+k>° 02(l + 2 (1 + 2"

jk-k';i " 212Xl--

..- = Q_ _..1<+,*j> o (1 + Xj)q II<,>o(- + )qlL 2 2 1 lo '+k~o~l+
j, k-

(1 + 2 + k )

(by Cauchy-Schwartz and choice of q)

) o-2r'";:;< 02(2\ 1)- 1 ( l+1121*1l 2 ) 1/ 2 / 1+ Xj

-p-

:0 = Q22,X -l4lll~l < aD, since

OD -2r1'" 1 a= X 1+ < ao by Al.

hence

-4-1 +k) 1 <*'j>o 'k>o 0(+j'*k ) l

fi~ ~ ~11 Hill. k 4 1+~

S < O1G2(2X 1)-I "'"q q 0,4 e

and since I is dense in a continuous bilinear map B may

be defined on I by

%'
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- + Xk) J<j>o <*'+k>o 0(+J'k)'

Define a continuous linear map S : _q -) Eq by requiring

< Suv>_q - B(Fqq ,Fqqv), V U,v e L q.

Then S is positive, selfadjoint and nuclear with

Tr(S) (Xc + -1 + + - q

* j-1 k-i

Define a continuous linear map A • -3 o by

CD

A+ 7X +j.
i-i

Then, for any r > 0,

'j", % [r  _< 11011 [r

and hence A extends to a continuous linear map: !r - r

for every r > 0.

Now, the mapping

Lq 3 Y -), mAF.qy ]

defines a continuous linear functional on Iq and

- .o . q .. • . -• d ° ,
,  

-C ' "i

! . - " it " ' : m il I - " -.. . . - . C' - .
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therefore there is m e _q such that
q

* m[AFq Y) - <Y> q Vy e _q.

Define, for 4 e

Cq(4) = exp(im[A ] - 1/2B(4,+)).

Since (by theorem 11.1.4) any + e § has the form

+ = Fq yfor a unique y e _q we have.--- qY

C (y) = exp(im[/Fq y] - 1/2B(F q y,Fq Y))
q -q -q -q

= exp( i<i,y> -- l/2<Sy,y>_ q);

i.e. C q(y) is the characteristic functional of the

Gaussian measure on §Lq with mean functional m and

covariance operator S. We shall denote this measure by

V= N_q (m,S).

-In the sequel, whenever we talk about initial conditions

for SDE's on ' we shall tacitly assume that they satisfy

A3.

A Borel measure p on ' is called an invariant measure for

the SDE on

.................................;
- .......r..



21Ldt - L'Ntdt + dWt

(7)

if f, whenever has distribution p and jIL{W. s > 0),

P( e A) -pA) V Ae aCI') V t> o.

-Note that since I' is the strict inductive limit of Er;

r > 0, BCJ') relativized to is equal to a (§r)

Therefore, any Borel measure p on Er can be extended to

a Borel measure on I' by identifying p with p* defined by

P*(A) - PWAfl r ) A e 841').

Henceforth we shall regard measures on L r as extended in

this way.

THEOREM II.1.1.

Let q - r 1 + r 2 * Then '9- N (rn64S) is an invariant

measure for equation (7). Moreover, if p. is any other

invariant measure then

p (A) -4 (A) A e a(fl).

PROOF:
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Let be independent of (w. s > 01 and have

distribution N (mS).

-q
Thn :rI q< co, so (7) has a unique solution by

.40

theorem 11.1.2 given by

o

j-1

Let N e N. The RNvalued process yN=

satisfies

NdY t = LNYtdt + dZt

(8)

where

(LN)ij - ij itj = 1,...,N and

z= (WtI ,...,wt[+NJ)

Ni.e. is given by

N M N 0 + (t SNdZt
' Yt t" 0o 0 St-st

where {S Iij - e ij; Ji - ,..,N.

;.

SHence YN is a Gaussian process, and a computation will

.. . - ,. ..,,...o:.: : .. ,.-. .. .... . .. . .' . " . . ,
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verify that

7N

BY N A l),...,m[AI)' V t > 0 and

N

Var(YN).j . BNj i,j = l,...,N V t > 0

Let FN : - R denote the map given by

FNIx) = (x1...,xN)'; where

X with
3=1

O

7 xjl U+ xi: 2q < CD.

Then

X N = FN'(Y NU-. xt NH -- y)

N
(recall from page 13 that XN \

J-1

NFix t > 0. Let C denote the characteristic function of

Y N2; Yt i.e.
- t

% %

*.2 .*.* ~..~ % * * ~ *. *.*.*.-.
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N N
CtNCylu..N exp(1L yjm[A+~jI

jml

1N

*2 ,YjykB(+Ju+k))

Let + e 7 <++j .~ (converging in
J-l

Then the characteristic functional of xN (evaluated at *t

is

N

=exp(i~ <+,+j> 0m[A+j I
j=1

N

* - -B(Z<++j>o+j#L <B+Ijk+k))
2 z,_k-
k.1m

N

* Now, ( <,j>oj \-- i n

jml N--)Po
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since B and m A are continuous on we get

N1
li K * - Kt(+) - exp(im[A+l - -(*,+))
N-30D 2

i.e. Kt is the characteristic functional of the measure

V- N (ms) (c.f. page 20).
hq

Now, lemma 11.1.3 implies that

NXt "-:> It for each t > O.
N0

Hence KN must converge to the characteristic functional of

* *t" i.e.

¢t

KtC*) - Eexprio[+])

But Kt was just shown to be equal to the characteristic

functional of '1.

Hence

P(-t e A) -- (A) V A e a(!'),

concluding the existence part.

Next let p be an invariant measure for equation (7). Let

have distribution p and be independent of {W. : s > 0).

By theorem 11.1.2 there is q > r1 + r2 such that the

. . . .... . -- .- , w - , . ,, .- - . . * .. -- . . . ','.°.. '-' _'''-.-. .. -'."...- - - -" -1% a a. %j *% % kb ~ ' ~ ', ~ J ? -. a u- - °, * _

V~~~~~~~ 2~ .~ .* *( ~S** ,~.~~\V~.
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solution _t to (7) satisfiesyt e I-, V t > 0. Let PN

denote the orthogonal projection onto

span+j : J - I,...,N) in Iq. Let FN be as in the first

part of the proof and let denote the unique solution to

(8), where I now has distribution p. Then, for any

B e s(flN), we have

- - I (B) " P B) t > 0
PN FN PCNN t

PYN e B) Vt > 0.
t

Hence

Op - 1  FN is an invariant measure for the ordinary SDE

(8). But the unique invariant measure for this equation is

the Gaussian measure VN on aN with mean

(m[A ]"",...m[A+N])' and covariance matrix

(;E)ij "B(+i' +)' i, J-l,. ..,pN.

Hence

.- 1 F- 1B) -"VN(B)V B e &fl(N)

N N

II

Since N was arbitrary, we get

P P 1  F 1 (B)- P-1  F-1 (B) B mN N e u.
H N N N ~ 53
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But

6' A C 3Lq : 3N4 em 3B e &(flN) : A - 1 0 F-1 (B))

- *(Lq) so P(A) =--(A) V A e s Iq)

But V,(C) - S(CO Lq) V c e s*l')

because, by invariance property, Pic) - PCIt e c) for any

t > 0 and t e L P-a.s. V t.

Hence, for any C e $T ')

A (C ) - (C(11 ) =- )(C iFL ) =

(C _(r1+r2)1 -V(C)

(note that q > r1 + r2 and that CAL, e s(q'), so that

(C§q) = '(CO _r+r) -1r(C),

by the convention of identifying %J with its extension to

II~ i' ) ).

We shall not give a general and thorough discussion of

stationary solutions to !I'-valued SDE's. The following

considerations will suffice for our purpose:

*a .*%. % . *
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For an ordinary Ornstein-Uhlenbeck SDE, starting at an

initial condition whose distribution is equal to the

invariant measure for that equation, produces a stationary

solution in the sense of K. It8, [131. This stationary

solution is defined for all t e R and is a wide sense

stationary process Xt which has distribution equal to the

invariant measure for every t e R.

We shall now see that also the I'-valued Ornstein-

Uhlenbeck process can be extended to a '-valued process

-It defined for all t e R, which is wide sense stationary

and whose distribution is equal to the invariant measure

". (for all t e R).

For each N e s let = denote the stationary-.~~~ ~ Fo eahjeIltY

solution to the SDE

t N

I " e-XJ (tIs)dW[,j. j - 1,...,N

notice that if t > 0 then

J- e- + e ei (t) dW [+ill
-- t 10 o t-s

where

JJ ef~, ed 5 141) and
0. 8

:--.--"..-".. .'. ,,,, * ' "'% .' .'-.- -'''. - -.' '.' '. : ."""","' .'' - . '.........-.-.% : .....
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the joint distribution of is

Let JJj- Then

j"1

D
3L )2I+jI,.q
i-1

00

*B(jv+j) +Cm[A4I) 2 )(1 +)2q

CD

, , 12 VA- A 1  )Q.+j+j. + L.. 2 . .- , + 2-

(by A2)

OD

(x O-2 Vx')Gi 02 (1 + X )-2q1 1 21jr
jml 2

'(x2 -1) + x2r < m by Al

and so

CD)

\I () 2 + 2 < OD P-a. s.
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Hence q eLq (P-a.s.) and 1C q 12q < O.

q -

-It now follows from theorem 11.1.2 that

9t Ct > 0) is the unique solution to the

'-valued SDE

!
d. at - F~ _ ,tr + da t

t>o0
540

Moreover, the characteristic functional of I is

-"C(+) =lira exp Ii \[A~j <,+>o5-,
j=1

-

2 -

ex*i[A j 'v-B(+,+ 'Yk)
2 j=2

j=1

i.e 2

I i.e. has distribution V N Crn,S)-

Il-q
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since q(+- I" e x dW* I + J v

is obviously independent of (Ws : > > 01.

Now, let t e R. Then

OD

j-i

j-1

ief2tt e 2X 1 QL+t~im

(to+ -)C(t-s) 2
+ ( e ds m[+j.]) )(1 + X ) =2q

7 (Q(+J' j)- + (- [+ 2)( + -2q

(kmj k 2Xe i i-2
CD

< \-1 r2(1 +  +)

(Xl+ C-m[921+)r2

m -(xa + D

1 1 2CD _2rl

Hence there is a At e r with P(t- 1

N ,... .... ..... .... . . ..
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( 1fl~)2Ijflj.q < 00 V 'ue at.

Def ine

Go

f?(CW)+. if we at

=~

0 if w0 At.

Then ~t ten is a Lq-valued process and

C P-a. s.) t>O0;

where _tis the unique solution to

d -t L " tdt + dWt

with J~N~q(-mS) and rq1Jw5 : s > 0).

A I'-valued process x - (x t) tea is called (wide sense)

stationary if f

I) *e I x 0~t+J does not depend on t.
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ii) v *.,' e : CovCXt[l+,Xs[,]) is a function of only

(t-s,*,O), t>s e a.

11.2.2. THEOREM

- ( tltea is a wide sense stationary process. Moreover,

for each t e a the distribution of is equal to the

invariant measure for equation (7).

PROOF:

Let +, e . Then,

CD

=1rOD

j=1

Next,

Cov(ft[+iui.[1-

CD OD

. \ ,,, . . .<.'k

.. . . . . . . . . . . . . . . . . . . . . . . . . . .
.. .. .s.. ........ ..1 k,,l
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34: 0\ -- jt- Se- Xk(S-t s) B (+j,

" L L <+'+j>o<+'+k>o e
j-i k-i

, (CD OD

>L L <*OJ>o< k>oB(+j' k)hjk(t - s )

j=l k-l

-Xjlul if> 0

where hjk(U) :=

e- ku if U < 0.

Since the series

" \ <+FjYk>oB({ j, k)
j=l k=l

was shown earlier to be absolutely convergent, this

concludes the proof of the wide sense stationarity of

By construction, for each t e R the joint distribution of

t.. f) is Gaussian with mean (m[Al],...,m[A+N]) and

covariance matrix { )ij= B(+i'j)" Moreover, by

definition of it we have

N
I t - lim inL

-"- zu (in q) P-a.s.
N->o j=I

Hence the characteristic functional for It is the limit as

S ". ' ,' .% "
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N

N-)-a of the characteristic functional CN of . Buti -t

4--

j=l
N

CN)- exP iL [A 1I+*> -

N/ L i\m j<+,+j> .~B4j4k -
j=1

N
1/2 \ B+

J=1

Hence

Eexpli t [+D lim CN(q)

= exp(im[A+ -l/2B(+,+1.

Hence P(t 6 ,. = V(A) \ A e _q where V = N-qm, S) is

the invariant measure for equation (7).

,PROPOSIO

When L satisfies Al and (Tt : t > 0) denotes the

selfadjoint contraction semigroup on H generated by L then

(9) T tr C Ir V r > 0 V t > 0

(10) TtIIr is nuclear V r > 0 ' t > 0.

,, . .... ...... ......,-*.'* ****.-....: -: ; , ..,. ..-...=-.... ... :..... :....... ....-.... .- . ,.,,,.,.,.,, . .:
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PROOF:

Fix r > 0. Let *e r" Since Ir f - H we have, for any

t> 0

Tt+ - ei< '> o +j so

j-

j=1

_< a l r ,

and since is dense in Ir this proves (9) and also shows

that Tt1 is [Or-continuous. Hence we only need to show

that Tt has finite trace for each t > 0:
tt

By Al,

CD"! + -2r1a (+ k < 0C.
-- j=l

2r1 -)jt
For t > 0 fixed, (1 + X) e - 0 as j - o.

Hence e < eO.

J-1

-4t
Since (e , • -) is the eigensystem for TtI ru

. * *. "*.. . o - -% , oo °°. o .. .
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.. : -- < °
OD j-- t C C* Trace (Ti e

tli

Next, we shall give necessary and sufficient conditions

that the transition measure of the Markov process

ft)t>0 be equivalent to the invariant measure

-- _q (,,S).

Let P(t[r 1 denote the transition measure of the Markov

process . For any J in Lq P(tl q is a Gaussian measure

on §Lq-

Suppose that > 0. Let be a q-valued random

variable sucn that q e Range(S).

Then, for any t > 0, P(tlT) and -d are equivalent on §q

iff

(11) m e Range(S and

(12) T (Range(S1 )) Range(S1 ).

By proposition 11.2.3., Ttir C r N r > 0 and we saw

that Tt a is -Ir-continuous. Hence Tt c I and Tt is

continuous on . T? denotes the adjoint of Tt considered

" -'
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as a continuous linear operator on . It follows from

proposition 11.2.2. that TtLrF -r N r > 0 and that

T. is nuclear V r > 0.

PROOF OF THEOREM 11.2.4.:

Let t > 0. It is easily checked that P(tl q) is a Gaussian

measure on Lq with mean functional T(, - r + ii and

covariance operator JE - S - T ST. Hence P(t ) and

are either equivalent or orthogonal. By the Feldman-Hajek

theorem (see H.H. Kuo [111 theorem 3.4 page 125) they are

equivalent iff

-S.

(13) T (q - in) e Range(S1 /2,

(14) Bt S1/2 (1 - Bt)S / 2 ; where

(15) B : Range(S1 / 2) - _q is continuous and I - t

is positive definite

(16) Bt is Hilbert-Schmidt.

Sufficiency of (11) and (12):

Since q e R(S) and R(Sl/ 2 ) DR(S), (11) and (12) imply

(13).

NoW, :E - S - TOSTI and since

,,,- .. -.. - .. ,, / '- -, ,..,-- ... -- . , ..-. -.,. .. -.- -.. .. ..- ..-. .. ..-.. ..- -. .. .- ....... ... . . . .. S.. '5. - .
, " -. " '. ., . , "" .* "

--. ..., ' , . ,, .' , o ' ,-:-,' '-,, , ', ' ', -, "',' .,:' , , ,'..'-.''.' . .".'.. ..",".,. ,%1 %. ; . : . ,
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Tt(Range(S 1/2) Range(S 1/ ), we have

S - T'ST' m S I - -_ TOSTS- )S

Define Bt = S--/ 2TST*S-I/ 2 . Then Bt is well defined on
.1/ R(SI/2) and I - Bt is non-negative definite (because :t

and S1/ 2 are positive definite) and

Bt M EtEt, where

Et: Sl/2T'S- 1/2, and E denotes the Hilbert-spacet t t

adjoint of Et on _q

Let fen : n P 5) be a CONS in _ consisting of

eigenvectors of S. Then

<Et enen>_q = <Tten ene>_q so

(17) L <EtenFen>-, <Tten en>
Sn n>-q

n-i ri-i

. Trace(T lI_ < CD

since TtIL is nuclear. Moreover,
q

i/2e /2

t t

i.e. e is an eigenvalue for Et for each je .

-" ° " " " ","-"-""" " ,","" " "" ;-"'" •" "• " " " "-"-"."- , ," '".".',,'."."..---,..',....-.-.-.. "--''
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Further, since

+j ;, j e 8)
: j-q

is a CONS in Lq, span{SI/ 2 + : N J I} is dense in

R(S1/ 2 ). Hence there is a complete orthonormal system

{b : j 9 NJ C span{S1' /2+ • j e x) for R(Sl/ 2 ) such that

= e-jtb

Etj V e R.

But then sup fE txII_q < 1, where
xeU

U - {x e R(Sl/2 ) : fIXIq < 1) and hence

Et R(S / 2 )  q is a contraction, in particular

continuous. Since Bt = E E and I - Bt has already been

shown to be non-negative definite it follows that I - Bt

is positive definite.

By (17) Et has finite trace and thus Et is nuclear. Hence

Bt = E Et is nuclear, in particular Hilbert-Schmidt, and

continuous : R(SI) -) Lfq. Hence (15) and (16) hold and

(14) is immediate from the definition of Bt . Thus (11) and

(12) are sufficient for equivalence of P(tIq) and

Necessity of j1J _And L2)

I •A v- • " - " , • • -. , ',,- -. %.'
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If P(t7) and %) are equivalent then (13) through (16)

hold. (14) gives

S - T'ST' - S 1/ 2(I - )Sl1/ 2 ; i.e.

(18) T ST 5 S/2B tS1 2

Since TS 1/ 2 and S1/2 are positive definite, Bt ist• *

positive definite. Hence we may write Bt = DtDt for some

positive definite Dt : R(S 1/ 2) - L - But then (since Tt

is easily seen to be selfadjoint on k and hence T' is

selfadjoint on (q) (18) gives:

(TOPS 1/2)(TI'Sl/ 2) (S 1/ 2D * I(S 1 /2Dt-.

and consequently

-p

R(T Sl/2) - R(S"/2Dt)

(see e.g. C.R. Baker (11, Corollary 1, page RR2) which

implies that TRS 1 /21 C R(S1/2 ). i.e. (12) holds. But

since i e R(S) and R(S) =R(SI), (11) now follows from

(14) and (15).

In the general case the formula for the Radon-Nikodym

derivative of P(tlql wrt. ) is impractical, but when

Ql#J,#k- 0 whenever j 0 k the coordinate processes

N" "" € . *... ... *. -. " .*.' ... . ' " " *"€ - ' ; " " " " "' " € " ".. '
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41j] are independent and S and T have the same

eigenvectors. In this case a very handy expression for the

Radon-Nikodym derivative is available. In addition the

case Q(+J,+k ) = 0 when j 0 k is of interest in the context

of [231 and [29].

Suppose that X > 0, Q(+j,+k ) = 0 if j + k and that

m - 0. If Tt satisfies (12) and q e R(S) c-q- then

dP~tlq)ra -2X
(Y) T (1 - e j/2

j-1

_ -2 jt) 2- 2

exp[2Xj6-2 ( 1 - e (e 2X (q + YJ)

2e- t qjyj)j; where

S62 (+j,+j) and

q and y e R(S) are given by

O_ OD

q = r?7 and y- 7
j=1 j=1

both converging in

-The proof is a straight forward appLcation of theorem

3.3 in Kuo [18], theorem 16.2 page 83 in Skorohod [251 and

",'... ' ... '..d;*.;. . ....- ,-. ." *.., - -....... ,.. .. . .. , ... . .-..-..... .-.-..-.. -.- --.-. .. ,, . .

€ , ,. e'= .:,. J.'. , '-.- .. , J .... ".. .. '..; "..S . -. ' " ... ... t' . f.':t .: ,.'-
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the formula

dP(t I R) dP(tl )p dP(tIO)

d dP(tIO) d)

We shall conclude this section by stating a simple

sufficient condition for equivalence for the case

Q1+J,+k) = Jk6" -

Suppose that hi > 0 and let e R(S). If Q has the form

6j . F for some 2 r2

Ql+J,
2

k) ke 3 3j)

then (11) dnd (12) are satisfied if

(a) 3r 4 > 0 3N o e 8 3c > 0

2 -r 4> C(l + j N 0

and

i-i

In 1231 Miyahara considers the following set-up:

~z
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Let H - L2([0, IT) and let w - ; being the Laplace

operator with Neumann boundary conditions at 0 and r7.

Then the eigensystem of w is {(C4,j) : j = 0,1,2,...) where

V-1/2 if j- 0

4j(x) - 2

J osjx if j > 1.

Let H = {h e H : <h,4 o>H = 0). Then w is strictly positive

on H and Miyahara considers the countably Hilbert nuclear

space

"+eH I1'"+ < (o V e i).

From a cylindrical Brownian motion on H Kiyahara then

constructs a I'-valued Wiener process Bt with parameters

m = 0 and Q(H,1) - <4,4>g; +,t e 1, and proceeds to study

the SDE on ':

dXt - wXtdt + dB t.

He shows that there is a unique invariant measure for this

equation, and, given any initial condition e j - the

transition probability measure of Xt given ? is always
equivalent to the invariant measure. Since m = 0 and

Q(4,4) - <I4,*> H in Miyahara's case, (a) and (b) of

proposition 11.2.6. are satisfied and thus explain why no

extra assumptions are needed to ensure the equIvalence in

. - ,- e . 4" . , . , , 4 • ." " " . " 4" . " ,, ." ." ," ." " ." " • -" ,," : " ','., " ,* • '," N" "" • . ". " . . '%.I-
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Miyahara's case. Moreover, \j = j and j > 1 (after

defining 1) and so Miyahara's results may be derived from

ours.

i. . - * . . - . -. . . . . .
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11.3. FLICKER NOISE

We shall now investigate the asymptotic behaviour of the

spectral density of the process qt[+], where t is the

stationary f'-valued Ornstein-Uhlenbeck process

alh =L qLT* + dWt; qo N_ (r,S).St--' t + qwt

We recall that if X is a real-valued wide-sense

stationary process with covariance function

Tr(h) = Covar (Xt,Xt+h) then the spectral density r of X

is simply the Fourier transform of TI :

1-1 = (2Tr) -1/2 J 0_. 'r(h)ei-hdh.

Following J.B. Walsh [291 we shall say that X is a flicker

noise iff

lir V2 P-, ) , 00

and for ee (0,2) we shall say that X is an f -noise,

iff for some c e (O,co),

lir - = c.

11.3.1. THEOREM

Suppose that Xi>0. Let * e . Let denote the spectral

""""- "" . . -_. ?", .,- . """. "". . .l - ;"'';.'"""' ' ""' . . ."""""", , . .,. """'"""""""""'"" ""e"' . - . . -
• .. .. . - . . ._._. ,o ,. . ,. . .. . . .. - . ,,.,-. , .- -. . . . . ,. .. -. "• %,,'. '. ". .,,,tq ,*". .,-. - % ,•k,, ,,w-.it-. %t"
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density of q*J. Then

0 if -ee (0,2)

.i, -V p'v) =

(2 )- 1 / 2 Q(+,+) if '- 2.

.So is neither a flicker nor an f -noise.

PROOF:

t - qoI I + .tOjlx-~ (1-e- J

j=l

+ jt e dWjs[+j <+,0j>H where

"]o[+j] N(Xj m[+.],B(j,+j)) and hence

Covar( t[],qtr+h[+]) =

".C O e kj ;h>O

L <,j>H <+Ik>H B +k)

j=l k-i h<0

The series

".)~ ~ 0 ODT <, <0 ~

4 Z <'+>H<+'+>H B(+ik)
J-1 k-i

*1.

is absolutely convergent for any + e and therefore

.. . . . ..%

21, IL
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OD (D ,~ h+ i-9h

/ /- <+'j>H <+1k>H B(jf+k)( )o~ed

0= e=1 klhl+l-vh dh). (2171)1/2

-OD

OD OD -/

j=1 k-1

-1 1

X + iV) Xk'

OD OD

(19) <+=> <+kHBj+) 2)-1/2

j=l k-l

~2 2~ +T
k +V j2

For 0%'e (0,21,

X k~+~ +i + i (X j+Xk) 2) 12
2+ ;2 X2+v 2  

- X .2(2,?I
k k

x22_V + 2 kV2 + (X Xk) ]/
k X?2+ , + (X?+\.v /

0if ee6 (0,2)

(20) -

-I?4x > X* if ,e 2 .

)Z
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For .(-2 we have

sup (X j+Xk)2 ]1/2
sup 2 2 2 2 I
-V eal I(X+,2) (X2+. )

3 k 1/

[ (X J+Xk) 2 ]1/2

lir 2 2 2 2 x j+k
)(X

whereas for oC (0,2) the supremum is attained for

2 2 + -l-1) 2 (j,+Xk) 2 + 4 (2--)# X 1/22 l k F( 3+kk k

2-,(

: Yjk

A short evalurtion will show that for all k,j and

X X2 + V 4 + 2 + 2 )
22 4 22 2

Xjk + N 4 + (X? + X2)2<

1+ 2X -: C@i 1

Noting that Vjk > 0 and that 0 < X1 X2 <... we get for

P"e (0,2)

(X j+Xk) 2 1
sup 2 )/2=--ie a (X k+, 2 )( Xk+-v2 )

W 1-lll2+X2 ) + ((0-1)(X +X21 2 + 2 12--'-'/2.

: -.-.-. -. .. .- . . .... .... ....... ,.. ..,...* .* , . .. .. ..' .' .' .' .'.*...' '....'..' .' ... . .,-,' ..:'.'.'.'.' .... : ,

" ' ~ "k' .,j k." k ." "j:.% "" , .,:" .- "" "" ""' - " ', ''...""- "• , % *,",,""" ''
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0(12

°dl 2 X () +)k)2 1/2

* (2 W)

j + y.k) ( Xk+ ('jk )]

-2 2..2./2 3i ..)/2-2 2 (2X 2 +2 2, 2/)

-) (\+Xk+ /1 " 2-<

-2 '/2 3+(+
x_ (X ) 3(

1 2-
< x(-- ) (X +X ) + ) +

2-o(<

and therefore we find

L \ \ <k + i
J=l k-1

:- L L <4+Fj>o <'+k>o j+ c

j-1 k-1i+X

L 2- ) 2 (1+x 1+ 1+,, for o, e (0,2)
1 2-& i ('"k

xJ+X k  for op', 2

-%
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00 00
7O7-r 2  r2

-L I<4'J>o <+,+k>oIe2 (1+Xj) ('+Kk)

C1(- ) (1+x ) ('+Xk +  for ,e (0,2)r, 2- 0

r2+1+o< r2+1+-(

<+,+k>oI2(1+Xj) 2 + k )
, L L I<4 ' :>o

j-1 k-i

1
C- for o 2

C/), 3 0 -- /2 7 7 r 1+r 2+ 1 +pe

1 21-- I I<,+j>oI1l+Xj):. 2-" jL k.

j-1 k-1

r rl+r 2+1+W -r
(1+x) I<+,k>ol(l+Xk) ](+x) for

,'e (0,2)

.1k=

-r -r
C: 2X =DkL II:>l'+\) 12,(+\.) 1I<+U4,k>l

(1+k) 12 (1+\j 1  for -'= 2

2ce2  32
23 " r+r++ . for ex/e (0,2)

< 2\ 2-" 1 2

I 2 e+ for -.- 2.

2Xi 1 2

Combining this with (20) the DCT gives

Le_
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o if A'e (0,2)

'b if (2

where

b \ <Ji><~~ > B(+-~ (217) 1/2*

j=1 k-i

lrn 2 ( 2+

j-l k=l

-(2 M) 1 /2Q(,)

-The assumption that X1> 0 serves the purpose of

assuring that none of the coordinate processes q~y is

a white noise. The theorem implies that 1P(V);t < )2 for

large -). For a one-dimensional Ornstein-Uhlenbeck process

the spectral density is proportional to (X\2 + V 2 )-. In

view of this, the conclusion of the theorem is hardly

surprising.

Let us look at an example studied by J.B. Walsh [29):

2 
d

Take H L - ([ ,bI) and L -I- - w t e m n

10 x2 wihNemn
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boundary at zero and b. In this case the eigensystem is

b -1/2 for j - 0

21/2b- 1/2 cos( 7rjxb - ) ; j > 1 and

).. +1 + 2T2 j 2 b- 2 ; j - 0,1,...,

and if, for a given 62 > 0, we take

Q4,0J) - i2 fb +(x)*(x)dx the series
0

CO7- r *t[+j ]+j (x)

j-0

converges for x e [O,b] CP-a.s.) to a limit V(t,x)

satisfying

[ f b V(t,x)+(x)dx (P-a. s.)

Walsh then showed that for each x e [0,b], V(t,x) is a

flicker noise and that the asymptotic behaviour of its

spectral density is that of an f-3/2 noise ((291, theorem

8.1.). This result may be obtained from our framework as

" follows:

when V( ,I) - ,2 Jb *(x)*(x)dx 6-2 > 0 we have

tq

- , and inserting this in (17) we get:

%jk

F N' -r .~S ~ ~

'% l

.4 ** * .j'%"'
"., . J".' , ."£.Z 'L¢£' o , ". "'2',.- * " . --. -*. ." ." .."" "" " *" - *. " S *-"., .*"" . . - -. • . * ".".". ..- "
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f)(b) - <+,+j>2 (27)-1/2 2

Let x e [O,b] and let Cely) be a smooth approximate

identity centered at x.

Then V(t,x) - 1tm *,,eI and

(21) ( )  L (+j W))2 (2 -1/2 2

j=0

(note that 1 < oD; since + = I+ 2j 2b- 2

Moreover <+ < 1 V e > 0).

J. Inserting the expressions for +j and Xj in (21) above we

get:

spectral density of V(t,x) - F(N) -

6- 21 OD 2cos 2 (k r7 xb 1

b( 1/ 2  + 2j2 2 2

which (apart from a constant arising from a different

normalization of the Fourier-transform) is Walsh's

expression. His procedure may now be followed to conclude

that F( O o -3/2 for -v large.

Walsh remarks that the sample paths of V(t,x) for each x

. v ... • 4- d l, * ] - b * * t W* . .. .- We -
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are very irregular. Since t J Vlt,x)+(x)dx we
would expect the sample paths of t[+] to be much

smoother than those of V(t,x). The fact that P(-1 is not

a flicker noise, whereas F-) is, is therefore intuitively

agreeable.



CHAPTER III

LINEAR SDE'S ON A COUNTABLY HILBERT NUCLEAR SPACE:

EXISTENCE, UNIQUENESS AND WEAK CONVERGENCE OF SOLUTIONS

We have previously investigated various properties of the

solution to a linear I'-valued SDE of the form

d t - ' qtdt + dWt

,-

where -L was the generator of a selfadjoint contraction

semigroup {Tt : t>O) on a certain Hilbert space H with the

property that there exists r>0 such that (I + L)_ is

Hilbert-Schmidt on H, and where the nuclear space was

defined by

+ e H II + L)qIIH < oD q e R).

W t was then a I'-valued Wiener Process.

.4

I 2,
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The existence and uniqueness of solutions 
in the above

context (for Wiener and Poisson generated noise) is due to

Kallianpur & Wolpert [14]. However, it is also important

to be able to solve such linear I'-valued SDE's in

situations where {Tt : t>O) does not have the property

*that some power of its resolvent is Hilbert-Schmidt and

the topology of the nuclear space is not so intimately

related to the generator -L. Also, it is of interest to

be able to solve such equations when the noise is a

generel L2-semimartingale on I' (see page fI for

definition).

In section 1 we shall address the question of existence

and uniquenesc of solutions to SDE's of the form

(1) d qt = AFJqtdt + dl~t; qoc

defined on a generel rigged Hilbert space c-e H -

(see Gerfand & Vilenkin [6] page 106 or Appendix) where

A : I -- I is continuous, and A is assumed to coincide on

Swith the generator of a semigroup (Tt : t >0) defined on

H and mapping into itself. (see AS.l page 6, for the

precise assumptions on A and (Tt : t>0}), and where Mt is

a (weak) I'-valued L2-semimartingale, defined on page t/.

By analogy with the finite dimensional situation we might

expect to be able to write the solution as

I ~C * '.~*

• .".4".. " .. - *'' ": .' % *22' ',g .', .' '..' . , . ' . . ' ".: ' ." " ,",". ,"
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S + It TtsdMs

which requires a definition and study of I'-valued

stochastic integrals. Although stochastic calculus has

been developed recently by A. S. Ustunel [261, [271, [281

and Korezlioglu & Martias [161 for the dual of a nuclear

, space, from a user's point of view it is preferable to be

able to solve 5'-valued SDE's without first having to

learn stochastic calculus on '. Moreover, since the

equation is linear we would suspect it should be solvable

without any reference to stochastic calculus. Indeed, by

formally applying It81's lemma to

V_ dM we get

(2) t= T 1] + fA'T --M ds + Mt a.s.
t-ss t

as a candidate for the solution.

In order to show that (2) is indeed the solution to 11) we

first show that the stochastic integral equation

I t + ro JA' §ds +Xt a.s.

has a unique "weakly CADLAG" solution for X in a class of

'-valued processes which contains the I'-valued

L2_-semimartingales and that this solution is given by

.....'.........-'............................-.....,.,."..................-."....- ,,...".':'-.-."'.".. '-.'-,'-.'.'-.' .- ., ,- -,.. . . . . .' '-
..; :.." ":, ,.;" . " .*,o .' .. '. " * ] ' " " *VY" '. -'$"" .• "%-** *..*", •. . ." ' **." • " ".5, ., 4'* ."'*" :'" o
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(3) I T + t ,AT _Xsds + Xt a.s.

(this, of course, will include a proof that the right hand

side of (3) actually defines a I'-valued process).

Once this is established it will follow that (2) is the

unique weakly CADLAG solution to (1), and it is then

proved that for every T>O there is PT e so such that

(qt)o~t_ e D([OTJLPT

the Skorohod space of all I -valued CADLAG mappings on

[0,T].

Finally, in section 2 we prove the main result which,

* loosely speaking, asserts that if the initial condition

and the noise M in (1) converge weakly then so does the

solution to (1).

II.l1. EXISTENCE AND UNIQUENESS OF SOLUTIONS

Let -, H c- ' be a real rigged Hilbert space where H is

a real separable Hilbert space. Let E denote the nuclear

topology on I and let r : r e So) denote the generating

sequence of Huilbert spaces for (j, t) and let J_ r  Ir

AL--
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with the strong topology. For r e no' 1 Ir (Ilj __)-

-denotes the Hilbert norm on Ir (Ed - We shall denote by

Gthe strong topology of I ' and we recall that (I P61 is

the strct)inductive limit of L 10A-reo
willdente he -- feldgenerated by the strongly open

sets in '

To avoid confusion with inner products we shall adopt the

notation that for q e ' e I r~C+ will denote the

value of the functional qevaluated at*

Throughout the rest of this chapter A will denote a

te-continuous linear operator: I ~ satisfying

~L.JhbThere exists a strongly continuous semigroup

{T t :t>0) on H whose generator coincides with

A on and such that:

(a) Tj C I vt > 0

(b) Ttjil 1- is continuous in (j,r)

Vt> 0

(C) t -~Tt 4 i -continuous for every+ e

For any t > s>0Or any 46 elIand any 6 e I we have

% - *5 ~~~ . . . . . 5
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(4) PI-0 Flo]J = FIT A4,Jdu

(5) ItJ F[tt_ A Jdu

PROOF:

Let t > s > 0, e e , F e f'. AS.1 (a), (b) and (c) imply

that TtIj is a strongly continuous semigroup on (1,r). Let

8 denote its generator (wrt. the C-topology) and put

= Dom(B).

Then I is dense in 1, and for every * e I we have, since

F e 61,

d F[Tus 1 = F[TusB41]; u > s and hence

. F[tt 1 - F[41] = Jt F[Tu__Bj]du "V' 1 e , and similarly

F~tt*s] - F[I = Jt FtTt__Bjlds V *i e

also, for every 4 e 1,

lim (h Bq in (1,r)
h4O h

since I- Hc"-1' is a rigged Hilbert space, ""H is

r-continuous and hence

(Th-,:)j
lim II hB II. - o
h O h

La

P I " ° " °

~Ib J.. . Y., .j. . p-,, - - -, -. . - *. - . - . . . .-. .. ,,, , -'" . . - .'. . ., .. - .. . . . . '.'. , '. '. , , . .... .% " . . . .
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but, by AS.1 we have for any * e

S (ThI)0
h O h

and since c we must have

BO=A4 VA* e , hence

F[ [] tFT A4Idu rp

FtTtJ1 - Fr = -- F[TtAIdu V e

Now, let On -30 + in (It), *n e 1 . Then
n->-m

JF[Tu-sA*n] - F[T sA0]I --- 0
n->co

-S

for every u e [s,t], by AS.l. and the fact that F e '.

Further, since F e I', F e _q for some q E ,, and since

by AS.l. (c) the mapping

[s, t] u II TusAnqIIq

is continuous for each n e V,

. f(u) : - sup ITu.sA* nq; u e [s,tI
newnq

defines a lower-semicontinuous function f on [s,t] (note

that the above supremum is finite for each u e [s,t],

. • . . . . .* . - . . . .. . . o. -. ° . . .- * . ° . s . . , .. *. . •* * •s s . • .

'.. .. ... -. '. . . . .- ° .o..'- 'o,'o o ° -. - .° .- - o . . -;.. .. 5oo ***** " ' *F F s*
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since *n-0 in , In particular, f is bounded on

Is,t], and

IFLT_ sA9nI 1 IIFII q1TUsA*n 11q

< IIFiI u_q ) V n e 8

and hence the DCT gives

" FIT AJdu - t FIT A+ds, but

T--- F[Tt_ I1 - F[I+, by AS.l. (b)
n-*oD

and hence

F[Tt__*1 - Ft3 = F[Tu--AO]du

In a similar way we obtain

.t

FITt_* - F[0] f F[Tt A Jdu

Since + e was arbitrary, the proof is complete.

~~~~~~~~.. . . . . . ......... :.- :::;...........: ... . ....... I * *-:- ::. - ......
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111.1.2. THEOREM

For any ro e J' there is a unique I'-valued weakly

differentiable function : [0,1D -> j' satisfying

:.! t~t)[ = T ?(t)[A*]

Ve~

PROOF:

EXISTENCE: Let T' denote the adjoint of T regarded as at t

bounded linear operator: -3 o. We claim that

q(t) := TlO is a solution:

In view of AS.l. (a), (b) and (c), let B denote the

generator of (Tt : t >0) wrt. the %"-topology and let

= Domain(B). As we have seen previously,

Bj= A* V* e 1. Now, for $ e 1, t -) Tro[v] is

differentiable with

(*) Co[Tt*J - ro[TB* = qo[TtA,.

As a consequence of AS.I. (c) t -* T1q o is weakly

continuous, so for any T>O,

-o-..o. . . ........................ .. ..- . .,.... . .. . °...... °. .. ° -o o.
. .°. , -. .. -. % .. o • °o...°o. . - -. . . ° - - " . -.. ° ° o .. . , . . o - - % - , . - .
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su JT~qo0+J I < OD e ~~
O<t<T

Hence the Banach-Steinhaus theorem yields the existence

of PT eg o and a constant CT>0 such that

sup IT~qo[+j I CTII+IP V * e I
O<t<T T

But then T o e _ V t e 10,T] and

sup IITqoll CT <
O<t<T -PT

Now, fix + e j, and let On e ; -O n in (j,r) as n - cx.

Then, for any T>0,

sup I r[ot"tnl -Jo[Tt4ll < CTII~ n-*1 - 0 as n cD
0<t<T PT

Hence t -> qo[Tt+J = T~qo[+ ] is differentiable and (*)

and AS.l. (b) now give

dt o[Tt, liu qo[T tA* nI

= TO[TtA+J,

concluding the proof of existence.

UNIQUENESS: Suppose that f(t) is another '-valued

weakly differentiable solution. Let y(t) :- q(t) -- (t).

Then ylt) is weakly differentiable and satisfies
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ty=t)[ ] y(t)[A4
Se|

y(o)[+ - 0

For each t>0 let z(s) := T'- y{s); s e [O,t]. Then there

t-s

is a dense set i such that [0,t) a -) z(s)[*] is

differentiable for each * e 1, and

z(s)[] 0 V 6 | V s e Co,t)

Lproof: Combining AS.l. (a), (b) and (c) we see that

TtJf is a strongly (i.e. IC-) continuous semigroup of

linear operators on 1. Let B denote its generator (wrt.

the r--topology) and take = Dom(B). Since N. H is
,-continuous it follows that

At = BO e 1 .j- Fix s e (O,t). Then for any * e we

have

Iz~s+h)[*-z(s)(j)

y(s+h)[Tt-s-h I]-y(s) [Tt 5 sI]

i h 1h
T___h-Tt_s y(s+h)(Tt- ]J-y(s)[Tts *

Iy(s+h)[ I + Ih h

But y(.)[+] is differentiable for all * e , so

ii.y(s+h)(Tt.sl - y(s)[Tt-]*u

h-*O h

-. -,,. -. --.- -. -.,.- ... ...... , .'... ,.,.,-. .. ... . .... -.. -. ,- : .., -... --.- ....,,. -,. -.. .,
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day(u)T-sJj = y(s)[ATt 8 sI

- y(s)[Tts A*)

(7) = y(s)[Tt 5sB# ]

Further, since u -> y(u) is weakly continuous, we have for

any compact set K with s e interior(K)

sup ly(s+h)[+4l < co V + e |,
heK

and therefore the Banach-Steinhaus theorem yields the

existence of a constant CK and rK e no such that

hKup y(s+h)[9]1 < CKIIOIIr V e

But then for s+h e K:

y(s+h)[tsh__h- T s +Tt-s B*]
- + T <B

CKIIh Ttsh - T + Tts +II rK

--- 0 as h -> 0 since 0 e j and l. 'r is r-continuous

r e v . Thus
0

T t_s-h, T Tt-s
lira y(s+h)[ t h - -y(s)[Tt-sB*],
h-> o h

and combining this with (7) we get

WC. . . - , - . , , . , "- ; -" . -,- ,. . .. . .- ., ,. . .,, . . , - ., - .. - -. - .,- . . . . .. , , . . , . -, .. -.- , -; , ., : ,
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li a(shn - u(~ as desired]l

Therefore for any 4 e (O,t) we have for every e 6

z(t)[1~1 - z(d)[41J - t~ dzs[Jd

0 0, and hence

y(t)[tJ = z(t)[*i = z(4)[4J V e 6 , V 6e (o,t) so

(8) y(t)411 - y(h&)[TtA4Ji e e16~,V (0,t)

But W- Y(4) is weakly continuous, so again the

Banach-Steinhaus theorem yields the existence of a

constant Ct and r e v such that

" sup ly(4)[+Jl <_ CtK1rt V + e I
0. <4<t

Hence y(a) e Lr V e 0't

Now let y : yl); n>2. Then, since y(0) = 0, y is

weakly convergent to zero in ' and hence strongly

convergent to zero in 1' (see e.g. Gel'fand & Vilenkin (61

page 73), and yn e Lrt V n>2. But the strong topology of

-' induces the I" I_- topology on . Hence

"•nL *By (8) we have
Yn ----- 0 in _r t

": n-3oD

y(t)[*J = Yn(TtA e1 V 4 e j, V n>2 so
n.y.. ! **'
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Iy(t)l*JI 1 IY~L-r IT t-1t*Or v ej1, qn>2
t n

and letting n - co we get (since

T tt "l -r ITt II as n - co)
n t t

y(t)[ -o V ei

Since ] is dense in and y(t) e i' it follows that

y(t) - 0. But t>0 was arbitrary. Hence y(t) - 0 V t>O

concluding the proof of uniqueness.

Let (11,F,P) be a complete probability space. In the

sequel all stochastic processes and random variables will

be defined cLa cn,F,P).

A mapping Y :n - ' will be called a I'-valued random

variable iff Y is B(1')/F measurable.

A mapping Yp : A -3 J_p will be called a Lp-valued

random variable iff Yp is a (Lp)/F measurable; where

a (I ) denotes the Borel 6-field on Ip, p e z

Let I [0,oD). A mapping X : Ixn -> ' (respectively

IxO. -) Lp ) will be called a I'-valued (respectively

I_p-valued) (stochastic) process iff v t e I Xt(.) is a

I'-valued (respectively Lp-valued) random variable.

!p

No. ". " .S
%  N b 4 "p 4.4%" " , , • ,., ... , . . , .. " * " " . " . "A- -02

.*. .* .an *,*. 4 ° "* A . ' . . " . .- .-, ." "." - . ., .. ". - ". ,I,.:.
'
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A I'-valued process X - (Xt)teI will be called measurable

iff Mew) -> X tlW is £(T')/8lIlxF measurable; where $(M)

is the Borel e-field on I.

Similarly, a _p-valued process X = (Xt)teI will be

called measurable iff (tw) -) Xt 00 is a(EPl/SIuxF

measurable.

Let {Xt : t > 0) be a I'-valued process satisfying

AS- V t>O 3 at e Fwith P(A41 -1, 3q(t) e N0 such

that

XS((V) e -q(t) Vs e [0,t V w t and

V e at : the mapping [O,t] ) s - Xs(W) is

CADLAG wrt. 11. _qlt)

'-

Then, for every t>0 :- (X ) is a L-valued
, se[O,t] q(t-

- N. _t-CADLAG process CP.a.s.) and therefore (since

.(I_q(tl,. _q(t}) )is a complete metric space) Xt is a

" vtValued measurable process. Since (I',6) is the

(strict) inductive limit of ((I_qL.U.q'I_*Iq)qem0 it follows

that X is a I'-valued measurable process.

We can then show:

-g

, -. • . .... ..... ... .. . ,..... .. ...-.- , -.. . ..-- . .-. -. ,-
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111.1.3. THEOREM

Let (X t : t>0) be a 10-valued process satisfying AS.2..

Let be a I'-valued random variable. Then

-(a) There exists a I '-valued process Nt satisfying

(9) P{~j,1 + ft I- [A+1ds + Xt[+J V*e 1) =1

Vt>0 and

(10) 3 G L3 F with P(G) - 1 such that t -), lt(wv) is

CADLAG wrt. the weak topology of I' for every

w e G.

-(b) if Ttand are two I '-valued processes

satisfying (9) and (10) then

PROOF:

*(a) EXISTENCE: Fix t>0. By AS. 2., there exists 4 e F

with P( t -1) and q(t) e 90such that

X(w) e J_,q(t) e 1 0,tJ V we 4tand

as-30X (w) i aCADLAG wrt. I*q (t) V e 41
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But then for e 6x .: (w) [Tt....A+11 <

4x 1X(w) Iq (t) ITt_ .SA+ 11q (t) v 9 e [o,ti ew at

AS.l. (C) implies that s -+ JITt- sA+I11 M) is continuous on

[Ott] and therefore the integral

Jt XWE[T~ 5 A+Jds is finite for all we and all + e ~

We claim that for every w e 6 the map

+ -* X 5 WE[TtA+Jds is continuous on (,)

Let w eat Let +n -3 0 in (1,'C). Then

sup IIT t..sA+ nIlq(t)<00 IV s e [Olt]
n

(since AS.l. implies that + -J Tt..sA+II q(t) is continuous

wrt. Ci. Define

Since s 4 flTt....A+II qM) is continuous on [Ott) by AS.l.

(c), f is a lower semicontinuous function on [O,tl and

therefore bounded on [O,t]l. Hence f e L1 ([0,t)). Now,

IT t-8A+nllq(t) < f(s) Vn e * and
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T IITtsA+n q(t) -) 0 as n-),a V s e [0,t]

(recall that A is continuous on I and so is Tt s by AS.l.

Cb)). Since

Ix s(w) [Tt-s A~n X. 11 -~()lqct)lj Tt_ sA~n11q (t)

< olXs -l.lq(t) f(s) V n e 8

and since s -> RXs(W) I q(t) is CADLAG (note that

I IXs(W) I-q(t) - IXu (w) I1q(t)l - IXs(0)-Xu(w) I q(t)

and therefore in L ([O,tD, the DCT gives

fot Xsl(w)[Tt AO Ids -) 0 as n->a.

Thus, + -> J Xs(w)[Tt sA+] is continuous on I for each

we at. Also, for each + e 1, the mapping
t W -) ft XS(w)[Tt sA+]ds is measurable since (Xt)t>0

is a measurable process.

Now, a I'-valued map Y on (41,r) is a I'-valued random

variable iff Y[] is a real random variable for every

+ e I (recall that for a countably Hilbert nuclear space
the 6-field generated by the strongly open sets in I' is

the same as the 6-field generated by the weakly open sets

in ' which in turn is equal to the smallest C-field in

. .-..... o.......*..-.....'. . .. ..o-°. . . . .. ... • .-.. ,- . . . . ... %...-. -- .. -' ',' ,-,'_...,-. '. ' _-_- .- _',._,' .. --'..'v .. .'. < .,.."..:. ."-. .'. " ..." ,'.. .".. .-'.. .'., .",. .. ,: ,'.."-, .',. .- .4,
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N' with respect to which all the evaluation maps

* : -> ~ [' ' e I', * e , are measurable). Therefore

I gi venb

th vaue 4ap-

(3 X (w)[Tt_,AOJds for w-e at

0 for w0 A1t

is a '--valued random variable. Now, define a 1'-valued

maP -p ' by

t Ml + N 4t(); e at
Itt

't (w) =

0 for w 0 at

(where Tt : I' -> I' is the adjoint of T considered as a

tt

continuous linear operator on I).

Since Xt and are I'-valued random variables and since

Tt satisfies AS.1. (b), It is a I'-valued random

variable. Hence (St)t>o is a I'-valued process.

Next, we claim that ( : t>0) satisfies (9): Fix t>O and

let 0 e 1. Recall (1) of Lemma III.1.1, i.e. for any

F e ' and O<s<t we have

(12) F[Tt s - F41*1 - J FT U-SA+Jdu v e

so, in particular, letting F =X and 4 - AO, we have for

St:

,.,- .,,-, ,,...--..,> .=..-,..., ., ... ,. ..... . . .. .. .. . .... ,.. . ..... -.. ... . -. -.. . . . . ,.-, , ... . .. ,., , .. . .
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(13) X8 (W)T tA+] X sCw)[A+1 +fxs X()T U__A2+ Idu

Vse (oat]

Each of the following statements holds for every we tt

yw"""*' =(w)Tt+] + Xt(wv)[+] + Jt X (wj) TtA dds
(by (12) applied to I?(w) with s - 0)

= T(w)[+J + Th J?(W)[TUA+Jdu + X~)+

+ J~t Xs(tjv)[Tt_5 AJds

(by (13))

= J'(W)[1] + Joq T?(v)[TuA+du + Xt(w)(4+J +

X.Ou A + ft X.,(W) [T A +Idu]ds

= T?(W)[+1 + ft ]q(w)tTUA+Jdu + Xt(iv)[4+J +

j~ X(W)[AL ]du + Jt X~ 5 W[T AAJdsdu

q ?(IQ)(~ I9 +Jf [ q w)[ITAI + X (w) [ A+I +

o x (W) T~ U 5SAA+]ds] du + Xt (W)[+1

T ?W)CO + ft fu(wd)[A4 Idu + Xt(u,.)[+I.



76

Since *e was arbitrary, (9) is proved. To prove (10)

note that AS.1. (b) and the fact that 6 e' imply that

* t - (w)[Ttj is continuous for every t e A and every

+ e i. We shall conclude the proof of (10) by showing that

for P.a.s. w e a the mappings t -> Xt(w) [01 and

t -> It Xs(w)LTtsA4] are resp. CADLAG and continuous for

every 0 e 1:

Let Tn to. By AS.2. for each n e v there is 4 n F with

P(l n) = 1 and qn e 3 such that

t e [0,T n  t e A

Xt (W) e q n n

and the mapping t -3 X t(,&) is 11.11 n-CADLAG on [0,Tn] for

every W e X A n .

Let Gn  n a . Then P(G) = l and for each n e v
n>ln

t - x(w) is II - CADLAG on [0,Tnl.

nn

Fix u>0. Then u 6 [0,T ) for some no e V and hence we
have

\ we G : IXt(U)[0 - Xu (w)[0 <

lIxt (w) - Xu (W)1q 11411 qn V 0I6 , V t e [o n0

So, for each we G, t -) Xt(c)[0 1 is right continuous at u

for every e 6 . If u>0, take t,s<u, and we have for each

............-............ .. .j.----....--.

. .. .. .. +.. °.. . ..- ~ . .. . ... . -. .% -. %.. ..-... ". . .
","•". " •' :• ' "- .- "V-."."-'""-"".. .,,".-'. °' '"'"'"'" .''. .,, - ,-.. .-.,- ..- ..-. ° -- .. -" .',,,* % .*%.. ., *."...-... . .. :
*. . . . ..

+
" ,,: +- ' . . .... . . . .
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we G:

*Ix t(w)(0) - X S(w,)(+J S.

JI Xt (W) - X s(W) 1I qn ii q n e 1.
0 0

But the limit as t,stu exists and is equal to zero on the

right hand side by choice of G. Therefore, for each w e G

t -> X t(w)[01 is CADLAG at u for every 0 e 1. since u>0

was arbitrary, t -> X (w) is CADLAG wrt. the weak topology

of I' for every we G. Next, we will show that

w e GG : t -), JtX 5 (w)[Tt 5A.Jds6 e

is continuous wrt. the weak topology of ':Fix w e G and

let u>O. Then u e [0,T n for some n 0e 9 and

t --> X t(W) is 11.11-q -CADLAG on [O,T n I.

0

Therefore, there exists a constant L =L(w) such that

sup ~ x_(wfll < L('u).
te[o,T n I

But then, for any 0 e I and t e [0,T n] we have

J J X(,v)[Tt 5Aoids X GO I~e)T AoIdsJ

SX()IT t.sAO - A4]ds +
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sgn(t-u) uvt X ( )Tt A4dsi <

-tAu L(W) ITt__AO - Tu_AO I1 ds +

0

It$,u2 X (W)ETt AoddsI <t" (tUS v s

T n
o

0

Stvu L(w)IIT AOI1 ds.t~u €)ltvu-sA ql ns

The first term tends to zero as t -> u by the DCT since

iiTt.s.a+ - Tu-sAII < 2 sup IITts A 11 <
n 0 O<s<t<T no q

(by continuity, since AS.I (c) implies that

( s,t) - IITts A0II is continuous on

((s,t) e [0,T n ]2 : O<s<t)).
0

The second term tends to zero as t -> u since

.: l't u-s lq n  •[lt u't ulS _
0

sup 11 TtA011 < OD,•0<s<t<T no t qno
-40 0

and since tvu - tAu = It-ul.

As u > 0 was arbitrary and e was arbitrary we see that

t -) f t Xsw)[T_A.]ds is continuous wrt. the weak

"...-'.."....".....,......."....-..-....,.,.' ........ .'* . '*">'.-.''..,.' .- ''.'.'-,.'- ............-...... ","*;'," ','","
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topology on I' for every w e G.

Thus t -) t(,-) is CADLAG wrt. the weak topology of ' for

every (ve G. This concludes the proof of (10).

(b) UNIQUENESS: Suppose that It is another I'-valued

process satisfying (9) and (10). Let y(t) = 4t -St"
Then, for each t>0 there is T t e F such that P = 1 and

vwe 41~ y(t)(w[J = Jt y(s)(kJ)[A+dds e
nt " -V

Also, there is G e F with P(G) = 1 such that t -) y(t) 4)

is CADLAG wrt. the weak topology of 1'. Hence, there is

G1 e F with P'G1 ) = 1 such that

yct)C'4)(4 - fo y(s)(w)[A+Ads v * e , ' t>0

for each We GI. Hence

y(t)(w)[] = 0 ' * e , V t>o

for each we G,, by theorem 111.1.2. (take o 0 in

theorem 111.1.2. and use the uniqueness part). Thus

P(y(t) = 0 V t>0) = 1, as claimed.

PIP..... .
, *,, - . ... . . .. ¢ ... .. ._ ,. , • , , , .' -. i . . I -'A -. . .. . , ..
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Note that we actually showed that the F'-valued process

given by

" t A'T' Xd
-t = q + xt +  "" t-s xs5

(the integral being in the weak sense) is the unique (in

the sense of (11)) i'-valued stochastic process

satisfying (9) and (10).

Note also that we showed that for every we G the mapping

t.-), ]'(i)Tto1 + ft X (w)[Tt5 A+)ds

is continuous for every + e when X = (Xs)s>0 satisfies

AS. 2..

Let {F : t>O) be a right continuous (i.e.

n = Ft V t>0) filtration on (O.,F) such that FO
s>t
contains all P-null sets.

Recall that a real-valued Ft-adapted process M = (t)t>O

is called an L2-semimartingale wrt. (Ft)t>0 iff M admits

a decomposition M = B + MI , where M1 = (Mlt) is a CADLAG
t t>0

martingale wrt. (Ft)t>0 satisfying E(MI) 2 < co V t>0 and

B - (Bt)t>0 is a CADLAG Ft-adapted process of bounded

variation on compact sets satisfying EB2 < O D t>O.
-- . .
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A I'-valued process m = ()t> 0 is called a (weak)

I'-valued L2-semimartingale wrt. W t)t>0 iff

e ( • +t[ > is a real-valued L2-semimartingale

wrt. (Ft)t>O.

REMARK 2

A. S. Ustunel [26] has defined the notion of a (strong)

'-valued semimartingale. A (weak) semimartingale in the

above sense gives rise to a strong '-valued

semimartingal- (see [26], theorem III.1.), whereas if

X = (Xt)t>0 is a strong I'-valued semimartingale then

(Xt[ +t> 0 is a real-valued local semimartingale which is

not necessarily in L2(.O,F,P), (1 e I).

The L2 property is, however, crucial to our argument.

111.1.4. THEOREM

Let (Xt : t>O) be a f'-valued semimartingale (wrt.

(V Then (Xt : t>0) satisfies assumption AS.2.

PROOF:

(Adapted from a proof of I. Mitoma concerning Gaussian

°ori",. - ' "• -. " .","' ."."," -" ." . ' .' -. '-. "- .. " °," ."' ".." . '" . .". " • .4 -,,*. ',"' .- .-.-.-- '-, %'% -' '"""". ' " . ,

* *" ,: ," .'* . . .*" . .".,""'''.'."". '''' . * ,'.'.",'."- . . ' ., . .,*. . . * .. -' %1 1 . ,
%

. % '• ,", ,
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processes ([21], theorem 1, proof page 211/212)).

Fix t>O. Since (Xs[.J : s e [O,t]) is a real-valued

L2-semimartingale for each + e ,

E.(sup Ix s[0l) - < OD e|
O<s<t

Since Xs(w), s e [,t] iwe a is a continuous functional

on 1, the mapping X () defined on I by

Xt C)(A ) :- sup Ix s(w)[+]
se[O,t]

is a lower semicontinuous function of + e I for P-a.s.,

we a. (note that the above supremum is finite for all

e I and P.a.s. ue 4., since s -) X (w)[+ ] is CADLAG for

every + e i and P-a.s. W e 1).

But then Vt(+) : = E(Xt(+))2 is also a lower

semicontinuous function of + e 1, because if 4n -> 4 in ,

then Fatou's lemma gives

lim inf V t(n) > E (lim inf (X t(+n)) 2 )

n-),oo n-)Poo

> .(xt(+))2

- vt(+).

Hence, for any n e 8 the set { : Vt(+) < n) is closed
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(V 0 V *). Now,

U : Vt(+) < n) and since (j,r) is a complete
" n>l

metric space, Baire's theorem implies the existence of

no e Ui such that interior({ : Vt(+) < n0 ) A 0, i.e.

(+ : Vt(+) < no) contains a r-neighbourhood of zero in .

But Vt is a convex function of + satisfying

Vt(a4) = Ia 12Vt() a e R and hence

Et := 1+ e -t < n ) is convex and balanced.

Now Et contains a -neighbourhood of zero in I (and

hence Et is also absorbing), i.e. there is a set Dt of the

" -form

Dt = { e pt < et}; e t >O such that Dt c Et.

But then there is a constant K such that

1E t() < K1PDt () ' e I (where p,(. ) denotes thePt t-

Minkowski-functional for the convex, balanced and

absorbing set B). Now,

PE = (V  ) n  and PDt() =- hence

Vt(+) < Kxnoet2 11+12  v e .

". 0:'a ii4 n n il laid . . .. .
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Since I is countably Hilbert nuclear there is rt > Pt such

that the canonical injection Pt rt :rt- IPt

is Hilbert-Schmidt. Let (+k k e U) be a CONS in Ir
.5, t

consisting of elements of . Then

* CD

. IIkll2  < CO, SO

k=1

OD

E(sup \ (Xs[k])2

se[o,t[ / -  [ )k--1

CD CD

< \ E(sup IXs[+k'1) 2  \ lVt(k)
- _ seLoti kZl

OD

< Ct Z_1 +k 1 p < Dwhere Ct K In 0e t ie

E(sup 11x 1s12 r) < CD.

Hence there is G e F with P(Gt 1 such thatt 2

sup 11XS(w)I1 2 r < c Vw e Gt

se[0t] s - t)

i.e. for each &u e Gt there is a finite real number N(w)

such that

(W) 112 < N(w) < cD.

sup iIxs (II_rt
se(O,t] t

Choose qt > rt such that the canonical injection• .rt
"qt : kt -) .r t is Hilbert-Schmidt and let { : k e v)

* .. . . . . . ... , ....- ....-.** .. .. *.. . , . . .** .- ,.. ,5 S *,., ** ,'. , , *: . .' , . 5,t

S-vv.,.-v , .$ .-. o:% ..- ,.-, -, ,- .,. vvv.. ... -v .5;> -.5*,5,_, 5 .5,,5 ,, -.. - ,.,,.

~ S 5 ~ -. 5: ~ ~ *.qt*
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be a CONS in _, t consisting of elements of .

By assumption on X, for each k e V there is 4k e r with

P P(4 1 such that the mapping

[0,t] s -O Xs(w)[*k] is CADLAG for every w eAk-

Let At = GO n Ak). Then PMt 1 and

k=i

IXU(W)l*k - Xs(')[0Jk0l2< 2 11w)llJklrt

for every w e it and every s,u 6 [o,tJ. Since

2 ca it follows by dominated convergence that

k=l

2 _

uin Ix (W) - Xu (W) I qt
0,u

lrn LjX (w)llk - XulV)([Jkl)2 -
S U

sIu k-i

urm (X W)[*kl 0 '2 e Kt"
k-k

Similarly,

2 "0 we qet.n IIx5 ,) - su, Xa(lW)I Aqt
stu

*S s'tu

Further, since qt >rt

* *. " - , , . . " " - ,"' ""- * .. "".. '•""., ",- .. '' .... ''"". . -"""". * " -"*,.-''"'- -.'''''..-.' ' .-.- - -''- "--...,-.k".,".-"[ ".'" ."/'".. .- ""' -'; ' - . . , .•,':"".*' . .- ''"""". '""""'''''' :.-' " .. - . '
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sup lxs (W) 11_q t i sup IXs (W) l_rt <Ose(O ) se[O,ti 

'y we At' completing the proof.

io"i,

For reference later we note that we showed that

- E sup 1IXs 2 r < aD. Since qt > rt it follows that
se(O,t] t

- sup II l2 <o0.E . sup O, 11 ]-qt
set0,ti

-Recall that a real-valued process (Y

is called progressively measurable wrt.(Ft)t>0 iff

(a) Yt is Ft-adapted V t>0ot

(b) v t>O : (s,&u) -) Ys(-); (s,w) e [O,t]xft is

8(R)/8([0,t])xrt measurable.

-Recall that A is a continuous linear operator on and

that (Tt : t>O} and A satisfy AS.l.. Let A' : ' -> '

denote the adjoint of A.

'6,

* 5 , - " , ' v . " v - " - " . , , ' ' ! . - " ' ' ' ' ' ' ' " . - . - ' ' v ' " - " , ' v . " . ' - ' ' ' ' . . . . . . . . . . ' . . . . " . . . " - " . . . , . . .

* * . ' - % , ,. .-.. .. .. ,... ,... .. .. ... . * .t .-. *... .
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2W2l

Let M = (Mt)t>O be a I'-valued L2-semimartingale and let

be a I'-valued random variable.

Let&)t := {Xs J : O<s<t)V{P-null sets), t>O. A

I'-valued process Yt is said to be a solution to the SDE

on

d~t A'gtdt + dMt

(14)

iff

(i) V e : the mapping (tw) -)St(w)[+] is

progressively measurable on [0,aD)x4 wrt. ( : t>O) and
4/.

(ii) for every t>O:

(15) P't1+t - T + ft o u A]du + Mt[+]

V + e ) - 1.

Further the equation (14) is said to have a unique

solution iff for any two I'-valued processes (ft)t>0 ,

(qt)t>o satisfying (M) and (ii) above we have
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(16) P( = '?t Vt>01 1.

111.1.5. THEOREM

Let A : ~~be linear and r-continuous and suppose that

A satisfies AS.l..

Let 14 = (M t)t>O be a I O-valued weak L 2 _semimartingale and

be a if'-valued random variable. Then the SDE on

dgt = ' tdt + dMt

(14)

has a unique solution satisfying (10) of theorem 111.1.3..

Explicitly, this solution is given by

=t T~J + Mt + f t A'TsMsds P.a.s. v't>O.

(where T' denotes the adjoint of Tu considered as a

continuous linear operator on ~,and where the integral is

in the weak sense).

PROOF:

By theorem 111.1.4., theorem 111.1.3. applies and thus the

~'-valued process given by
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*(17) 5t= Tr + Mt + It A'_ 5 Msds (P-a. s) Vt>0

is the unique (in the sense of (11) and therefore of (16)

o'-valued process satisfying (10) and

~{~~] ]~~J+ Mt[+] + Jt N5CA0]du e~ 1) ~ 1

Vt>0.

(17) obviously implies that t is 1/-adapted V t>0 for

every + 6 1, and (10) implies that t -)- _f[+] is CADLAG

P-a.s. for every + e I and therefore (t,-a) -~3(u[1is

progressively measurable wrt. Ytfor each e (by Meyer;

[20] theorem m 4.7).

Hence t given by (17) is the unique solution to (14)

satisfying (10).

III1. PROPOSITION

Let M (Mt~> be a F'-valued weak L2 -semimartingale,

and let be a I'-valued random variable satisfying

EIJr1 < aD for some r e no. If either

(I) IJL(Ms s>O) or
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(ii) ]is Fo-measurable

then the '-valued process

T= + Mt + tA'T _Msds (P-a.s.)

is a I'-valued weak L2-semimartingale wrt. ! tt>0.

PROOF:

We already know that tf ] is t-adapted for every e 6

and if either (i) or (ii) holds 'hen (Mt[4+])t>o is a

(7t)t>o-L -semimartingale for every * e 1. Therefore it
suffices to show that for each * e § the process

(jj[Tt+J + Jt M [Tt5 A Jds)t~
Ito s t ts s t>0

is a CADLAG L-process of bounded variation on compact

sets. But it follows from lemma III.1.1. that

t -) w)[Tt+] is differentiable for each + e I and each

' e 40, and the mapping

t -) ft M.(w)[TtsA41ds

is absolutely continuous for P-a.s. w e a. Thus it only

remains to show that for every * e I

E(T[t+ + ft M T A+Jds) 2 < OD t>0
,o - .. .. . ° ° . . - . .° . . .° . * °- .. • . ° . - • - ° -. - -, , . -.8, - ° ° - ° . ° ,b . - • o . ° °
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Fix 4 6 1 and t>O.

By Remark 3 there is rt e so such that

E sup M81 < co. Hence
. 0<<t t

E([7[Tt+I + Jt Ns[Tt AIdm)2 <

2E,)r[Tt+]) 2 + 2E( t K ITt _AJds)2 <

2(ilI2 r) ITt+U2 +

2EJo f IIF.-t I-rtUTt -A+ Irt' Tt A+ rtdsdu

<i 2jjTt4II2Rj q 2  +

,

2ft ft (EIt12 RElM 12 11/2PT A01 1 TtA011 dsdu
0 r t tts r - rt

C,

-. S< 2ItTt+112EIIII2r +

2E(suPs IIfit) (_ It-sAlrds)2 < 00,
0<<_ t

since El J1I2 r <oD by assumption and s -J ITtSA Ilr is
t

continuous on [0,t) by AS.l. (c).

For any T>O and q e N let DI[OT],Iq) denote the

Skorohod space of all Lq-alued functions F on [O,T)

* .o % ~ ft % . ~ %
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which are CADLAG wrt. 1. I.q- D[OTI,L q) is a complete

separable metric space under the metric constructed by

Lindvall [191 (see also [141).

Let M - (Mtlt>0 be a '-valued weak semimartingale and

let be a '-valued random variable satisfying either

Ci) or (ii) of proposition 111.1.6. and 9Irq1 2 r for some
rev

r eN o

Let ft denote the unique solution to (14) satisfying (10)

whose existence was shown in theorem 111.1.5..

Then, for every T>O, there exists 4 T e F with PM 1

and pT e so such that

T t- ( C ) te [0,T ) e W E[0T ,L, ) e aT"

m-

PROOF:

is given by

- T " + Mt + lt Msds (P-a.s.)
t-t

and therefore (St)t>o is a '-valued weak

L2_-semimartingale by proposition 111.1.6.. Hence Jt
satisfies AS.2. by theorem 111.1.4.. But AS.2. is

4

4% %

... . * '4 ' *.*... .'..*.~..',-, * '..'. 4. . 44 'M
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equivalent to the assertion of the corollary.

For any I'-valued process Y -(Ytlt>o define for T>O
y T :- (Y tlte[0,T].

If M - (Mt)t>O is a l'-valued weak semimartingale then,

by theorem 111.1.4., for every T>O there exists qT e so

such that

MT e DC[O,T IqT) P-a.s..

Corollary 111.1.7. says that for any "reasonable" initial

condition there is PT e uo such that

T e D([O,T],L ) P-a.s..

If qT - minlq e go : MT e D([O,TI,_qI

then, it is clear from the expression for yt that in

general PT > qT" However, when I and the operator A have

special properties frequently encountered in praxis we may

always take PT - qT1 provided that e I-qT" To see this,

we first prepare some auxiliary results:

ILL" hUM

Every uncountable analytic space is of the second category.

- . 4,
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PROOF:

Let S be an uncountable analytic space. Then S contains a

subset K which is homeamorphic to the irrationals (see J.

Hoffman-Jjrgensen G F. Tops~e [71, theorem 7 page 22 and

subsequent remarks). Since the irrationals are of the

second category, so is K and hence S.

I f 1 # (0) then (Ilf ) is of the second category f or
p

each p e n 0

PROOF:

Let pe e 0 and let 'Lp : - denote the canonical

injection. Then, since 4piscninos X *p ) is a

continuous image of the Polish (i.e. complete separable

metric) space (J,77), and thus (Ilfl.flp ) is analytic, so
the conclusion follows from lemma 111.1.8., since every

real vector space of dimension > 1 is uncountable.

For p e x let <.>denote the inner product on0 p lp

i.e. <4,0> + q12* ++1 - - 2)
p 2 p Hip Yp
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2MMIITIOI

A set (+j : j e -cI such that

i) (@. : j e v) is a CONS in t and

)x

(ii) Vpe v0 V+ e I

<+,*>p - <+,+J>o<' i+>o I+jll
j-i

is called a common orthogonal system for t : p e v 0 ).

111.1.10. LM

Suppose that I has a common orthogonal system {+ : j e
2) for {p : p G o).

If B : - o is a bounded linear operator satisfying

E -, then

(18) Ed C_ I Vp es

(19) BIp is 1.1 -continuous p e v
lp ~p0

PROOF:

Let p e 0 . For each k e 8, define

IL..........." .. ""....,....",......' -' ,, ,", - • ,, % ",' , ',,,',, " ";"2 . ," ',' - ' " ' 2 ,.', .'.". . . . . . . . ..-.. .. .-. ",,% - , -,,, ., . ., , ,
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k

f - ,<B+,+j>1 1+ I2 ; + e

Since 4ip> 14 0 V p e no , V e |and since B is

contnuusok is a p-continuous function of

+ e I for each k.

Also, sup fp)= Ik11p 2 < O e since m~C.j.
keg P

Therefore,

f p(): sup fk

is a lower semicontinuous function on (I'll. p. Moreover

fp(a4) = (afp (4) V a e R and f is convex on
op

Hence, for any n e 3, An = f4 : f <(4) n) is a

closed, convex and balanced subset of (,. Op ). Further,

aU A.n
n>l

Since 1+j: J e 3) is a common orthogonal system for

{Ip : p e no), 1 0 (0) and thus lemma 111.1.9. implies

the existence of n0 e such that

interior(A) 00 in (I, I pIp)•
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Since A is convex, balanced and contains zero, AnAno 0 n

contains a zero-neighbourhood in (1,1. p); i.e. there is

e > 0 such that

(4 e 1+11 < e) c (, e • fp(,) < no)

But then there is a constant K such that

f p ) < K11+0 2  v e ; i.e.
p p

UBI2 < K4,11 V 1 e

Since I is dense in Ip (18) and (19) follow.

III.1.11. THEOREM

Let H - to and suppose that has a common orthogonal

system (+j : j e x) for {p z p e no. Suppose further

that (in addition to satisfying AS.l.) A is dissipative

and selfadjoint on H -

Let M - (Mt)t>O be a 1'-valued weak L2-semimartingale

. and suppose that MT e D([0,TI,_qT ) (P-a.s.) for some T>.

Let q be a I'-valued random variable such E 2Ir < a)

for some r>O and suppose that q satisfies either (i) or

(ii) of proposition 111.1.6.. If (w) e V P

.......,....... .. . ...... ........- ,"€ -,t_-.... ..- , .. -. • a.- . .... ....
,,, , , .., .'' ,.''' ...,, . . ".,.. , ,,, .. . ... ... .. . , .. .. , .. ....,~. * .. . ., . . .. , . . . .
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then

T6 D(C0,TIL. ) CP-a.s.) where

St- TAt#Y + Jt A'T"_ 5Mds + Mt.

PROOF:

Since Tt is a bounded linear operator on H = and

Tj C I by AS.1. (a), lemma I11.1.10. gives T tk c Ttjq

Vt>0. Hence TtLq C TIEq V t>0 and therefore

IT'Rp_ < t>0. Also,

fM11 qT < OD '~ t e [0,T] P-a.s. by assumption.

To show that also

tIj AUT _sldsdSq < OD V t 6 [0,T] (P-a.s.)

it sufficies to show that * - K J' M(w)(T t5sA+Jds

extends to a continuous linear functional on kTfor

P-a. s. w e Ai:

Since A is selfadjoint on toso is T t for each t>O and

since T tA - At V t>0, TtA is selfadjoint. By the

spectral theorem we therefore have
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*<T tA+, > o f V)~- Xe d<(EU)+, 0 V + e

where 6(A) - Spectrum(A) and E(X) is the unique

resolution of the identity on 10 associated with A. Since

A is dissipative on 10 ,(A) c-- (-D,0] and hence

I<TtA4,>_ Ktll4It0  V t>0 V e 6

Where Kt = sup I Xe tI <± < a ) t>0.
Xe (A) et

Since I is dense in 1o' TtA extends to a continuous linear

operator on 1- for each t>O. By AS.1. we also have

TtA r I4 so lemma III.1.10. gives

T tA~q r- q nd

(20) is .H qT continuous V t>0.

By assumption there is 6 e F with P(I.T) = 1 such that

t -) Mt(') is -HqT-CADLAG on (0,T] for each we aT"

But then

(21) $t IM.( )(Tt_sA+]lds < ) V * e V t e (0,T]

V we a T, because

(22) IMs(W)[TtsAjl IIMs()U)lqIITt t.sA+llqT

*A

-'"' ". " "" "" " ""' " "" -'-."".. .".. .".. . ."""'".".". .". .""."".-.. ."."'"". ."'."."'"- '"".-."-"-"-. .".".. ."."-"."-.-.-".

: " " " 4 " . ." .- i " . .. 1 i'i . . . . . . . . . ..". " •-" % '-'' 
-

' 
" :

" _'S ' " -': ' ' "
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and since e 6 , s - IITt sA+IIqT is continuous on [0,T)

by AS.1 (c). Let n e N. We claim that:

(23) ~t-/n 1-_M(w)lTt--sA4]jds is continuous on

(,i. cT ) for all w e aT"

Let +*'k e f and suppose that 114- *kllqT -) 0 as k -) a.

By (20) ITt sAL[-kqT---- 0 for each s e (O,t-1/nj.

Hence

fn(s) :- sup lITt..sA(+-k)llq < a) V s e [0,t-l/n]

and since s -> ITt-s{+-k)llqT is continuous on

[O't-/n]' fn(s) is lower semicontinuous on [O't-i/nJ,

and thus fn e Ll([o,t-1/n]). Therefore

.t-1/n IM s()[Tt.sA(4--$k)Ilds --- 0 V w6

by (22) and dominated convergence.

Define, for t e 0,T] and we 4T fixed,

(+ - sup ft-i/n IM(w)[Tt A+jIds; +, e ;o~ rln

Then, by (21) and (23) gt, is a lower semicontinuous

function on (,1l.f q). Moreover,

. -.. ..... . ..' . .' . .. - . . '.' - ., * , , .*.. .. , .- ' "
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gt'Wa4)- IaIgt~, (+) Va e R and

gtWis convex on

Since (11 j. ) is of the second category by lemma

111.1.9., it follows by a now familiar argument that there

is a constant C(t.') such that

gtt < C(t'(w)II1IJ q V e ~

Hence, for each t e[O,T] and we 4~T1 gtL extends to a

continuous function on kT. But then

IJt M.(w) [ T, .AOIds - ft Ms (w)[ITt_ sA$ Ids~

gt~(+- i4) < C(tLo4Ij I~II q and thus

is 111 -continuous on for each t e [0,T] and Lve T

Since I is dense in T

* K~ J~ (w)LTt8 A+]ds is continuous on i.e.

5 A'T 5t( )ds 6e q ~ t e [0,T], V we

Hence yt () 6e t 6 10,T] -eaT
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-To show that t t is .HqT-CADLAG on [0,T] (P-a.s.),

we note that the conditions of Corollary 111.1.7. are

satisfied, and thus there is PT e N and GT e r with

- P(GT) = 1 such that

(24) T(w) e D([0,Tl,_p) \ we GT.

Fix s e [0,T]. Let t n s as n -> cD. Then by (24)

S(w)[4 f* ~(W)[] V*6 u GT,
n

i.e. for every w6e GT

t ) ---- pS (w) weakly on
,-.:n n.-'),{X

Since is countably Hilbert nuclear this implies that

't1) ----I TSGAstrongly on":n n-+ oo

Since t(') e -qT V O<t<T ' we a T and since (I',C) is

the strict inductive limit of

{_ • q e 3) this means that
q

.

I. ft C - fs(w)I1 -30 V We GTI1AT
n

But ( ) is a metric space, so sequential right. . But --T -qT

continuity wrt. II.-_ implies right continuity
qT

.."." ....... . . . . . . ..."-.-". . ..-. . ..-. .%-.- "-' " ' ••." ' " '.'.' ". '"'.-' .''' .-.- '''.' - .-. '""',- ."""". .
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wrt. H•llqT. Therefore,

St(W) is [[ H1qT-right continuous at a e [0,T) for every

we aT GT.

In a similar fashion we show that the left limit

exists in Ifl_qT for s e (0,T] for every ,e GTn aT.

Hence IT(,) e D([O,T];EqT) v -e GT (14T completing the

proof.

RRK

Corollary 111.1.7. may be derived without assuming that

satisfies either (i) or (ii) of proposition 111.1.6., but

the proof is rather long and tedious and since the

resulting gain in generality is practically insignificant

we omit it. Instead we note that this assumption may

consequently also be dropped from theorem III.1.11.

The class of countably Hilbert nuclear spaces possessing a

common orthogonal system for the generating sequence of

Hilbert spaces {1p : p e so ) is rather large and in

particular it contains any nuclear space generated in the

manner discussed in Chapter II and Appendix. In particular
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it contains the Schwartz space Y( d ) of all rapidly

decreasing functions ona

-Theorem 111.1.11 is a generalization of a very recent

result by R. T. Chari ([41, 1985). He shows the following:

(W denotes the closure of A in H)

Let f - AIR d ) H - to L2 2 d ) . Let A .5 C 9fd) -40(i

be continuous, linear and suppose that Ais selfadjoint

and dissipative on H. Suppose that there is a strongly

continuous semigroup of bounded linear operators

(T t : t>O) on 40(a d ) satisfying

(25) F[Ttol - FE0J

fo F[ATso1ds t>0 P e y(ald V e e ,"(

(in view of his other assumptions on A and (T t : t>O) (25)

amounts to saying that A is the strong generator of

(Tt : t>01 in the .9Y(2d )-topology)

Let 14 - (Kt)tObe an /'(Rd )-valued weak martingale for

which there exists q >1I such that

V T>0 : X4T e D([OT],Lq ) P-a. s.

If SI1Ilq2 < aD then the SDE on (R
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dt- A'Stdt + d t

has a unique solution I= (5t)t>0 satisfying

V T>0 • T e DCtO,T],I_q P-a.s..

As Chari remarks ([4], page 10): "It is easily checked

that T tf - etf for f e (Ad), (where etA is the

semigroup of selfadjoint contractions on L2 (Rd) generated

by A)". This in combination with (25) implies that our

assumption AS.l. is satisfied in Chari's case and in view

of Remarks 4 ind 5 above we therefore see that Chari's

result is a special case of theorem I11.1.11. and theorem

111.1.5..

His method of proof is quite different from ours, however,

and makes use of finite dimensional approximations,

obtained through a theorem by Doleans-Dade ([51), to the

solution and then it relies heavily upon the existence of

a common orthogonal system in 9 (fld) as well as the

dissipativity of A. Although his method gives that

T e D([0T],_W rather painlessly, it does not provide

an explicit formula for the solution. Also, as theorem

111.1.5. shows, neither dissipativity of A nor the

existence of a common orthogonal system are essential for

the existence and uniqueness part. Further, theorem

!-Z
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1II.1.11 shows that the assumption that the noise "lives"

i n the saoe Lq for all t>O is not material to the

conclusion. In fact, this assumption makes the nuclear

structure of Y superfluous (the fact that 9V is nuclear

does not enter Chari's proof at all) and in effect reduces

the problem to solving SDE's on a Hilbert space.

If the I'-valued weak L2 semimartingale = Mtt> has

the property that

( (26) V : m[]t> is a continuous real

L2-semimartingale (P-a. s.)

then the spaces D([O,T],jpT ) and D([0OTIbL qT) in

respectively Corollary 111.1.7. and theorem 111.1.11. may

be replaced by the spaces C([0,T, TT)t respectively

C([..TJ~) ; where C[[OTI t r denotes the complete

metric space of all I.Lr-continuous functions

f : [0,T] " r"

Notice that when (26) holds then

(27) V T>0 BrT e : MT e C([O,T;l P T
o.'s

((27) may be proved following the exact same procedure as

was used in the proof of theorem 111.1.4.). The necessary

- .- --. , . - .. , ,, , a " j , - -... € -- ,-. U, . -'...,. . * , .6. . .
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changes in the proofs of Corollary 111.1.7. respectively

theorem 111.1.11. are obvious and therefore omitted.

Hitherto we have not been concerned with the construction

of i'-valued weak L -semimartingales. In fact, our

definition of these presupposes that a '-valued process

M = (Mt ) t> is already given and then it is an

L2-semimartingale wrt. a filtration (Ft)t>0 if Mt [+ is a

real L2-2semimartingale wrt. t for each + e . In praxis,

however, one is often given a family {R(+) : 4 e 1) such

that R( ) - (R tl))t>0 is a real semimartingale for each

"e I and such that

M Rt()¢ l + X2 X t(41 ) + )X2 Mt(4 2 ) P-a.s.

,i.

.",.for each t>O, (X 1' I , X2'+2 ) e Rfx'tx1x

and so the question is whether there exists a I'-valued

process M = (Mt)t>O such that

MtL+J - t[I V t>o P-a.s. ' + e 1.
t

The following result, which uses a technique devised by K.

Ito in [121 known as regularization, gives a sufficient

condition which is often useful:

%
• -'.':,: " .':'. '-I?. Y-":-"-'*5-','-'".. ,.. . .- . ...--"". .. i-.. ... 3:- .-- , . :-"-: .... 5.:-". .-- ".
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111,1,12 TUREK

Let Nt W ( ): * e 1); t>O be a family of real valued
stochastic processes. If CMt)t>0 has the properties

(L) HOC+1+1 + c2+2 ) - cIit(4) + c2It(+2 ) P.a.s.

V t>0, (c1 ,c2 ,+ 1,, 2 ) 8 RxRx14 (note that the

exceptional to-set may depend upon the choice of

(c 1 ,c 2 ,+ 1 ,+ 2 ) and t)

and

(S) %Ve T>03C T > 0 3r 6 o : su < 2 11
T T 0 O<t<T C TT

Sve + e, and

(C) V 4 e i : (Mt(4])t>0 is an L2-semimartingale.

Then

(a): There exists a I'-valued weak L2-semimartingale

(M ) such that

K At[t (4) P-a.s. V 4 e 1, V t>o.

(b): If ('tM4 1 : 4 e ); t>0 satisfies (L), (C) and

(B') 3r e V T>0 3C>0 • Esup dit(+))2 2< CTI+12

0 T O0<t<T r

-. 9,I, *,*. -, * - -

. . .. . . ,.. .. *. , . .~ . .. *~ ,. *' '. '.,- " 4 " " ", ' - . ". ' - - . . -"41
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then there is q e a0 and a L.q-valued CADLAG process

K - (4t)t> 0 such that

Mtr+1 - RtWi) V t>0 (P-a.s.) V 4 e j

(and consequently 4 is also a ['-valued weak

L2-semimartingale).

PROOF:

(a): Let T O - 0, Tn>T n>l with Tnta0. By (B), for each

n e N, there is rn e xu0 such that

E sup Iiit(A)12 < CT 11 114 e
0<t<T n  - n  rn

For each n r e choose qn such that the canonical
.. n  - ninjection, qn is Hilbert-Schmidt. Let k k e V) be

ana

CONS in consisting of elements of 1, and let
n

(fk : k e 8) be the CONS in dual to k- n-n)

(i.e. fk[jI - k V n).

r r
By (B) and Hilbert-Schmidtness of 4, n we have for each

n e v:

sup \ (+n)) 2 <\ E sup 6 (+n))2IDt< L k - 0<t<- tn

,"'°J .*-,XJ r. , ; ,'J%-2,%,'2 ".2' , ,oa". ", -',, ,a -.- * *.',.' '," .. -" . .°.-.. ,,. ... ..-. --
n " ." . " "

j , - , , ,-.o L,. . ,, .. ,. ... .. ,. ,..,, ,... -. ,.,- . .
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,< +il < f.
,T n Z k rnnI~

k-1I

Hence for each n e U there is an e Y with P4n) - 1 such

that

CD

u L i (+,,))2 < OD V we A-- -- kkn0<t<T~ k=

Put G - C) a.n . Then P(G) - 1 and

n>1

O
-.: %- (i~t k.n6E:O<t<T2

V t e [OTn].

Define

"" ,-Mn if we G

") = t e (0,TJt [, n ]

* 0 ifv G

Then, for each n e N we have

M( ) we V G, V t e [0,T I.t Eqn
.. Lq n

and A 3 w -> Mt n"() is a -valued random variable for

each t e [0,Tn I.

Define

,.

-, ..''i .,.-" w . ..j-. €'' '.., ' '. .;..-* ' -: .-." ."." ' "- " .: ' -" ' ' ' ' ' -".: .".".".-.".".



t( ) - K (1O,T) I + n (40wlT_ TJM

n-2 ,

then K t is a '-valued random variable for every t>0.

Fix t>0. Then there is n e N such that t O (Tn iTn]* But

then

M +,]  4n[+n, qn) P.a.s.

for each k e It. Hence by (L)

Mt[4I - Mt(*) P.a.s. V * 6 span(+n : k e N)

But span +n - k e3) is dense in Ir and (L) and (B)
n

imply that Mt extends to a bounded linear operator from

2I into L (O,F,P). Hence it follows by continuity andr n

the fact that n - 1n -q 0 => -*n 0 that

Mt = (+) P-a.s. + e 6 n in particular

Ve.

If t=0, then a similar argument gives

M of+] = Mo(*) P-a.s. " 4 e . Hence

Mt11- R t(+,) P-a. s. e' 46 ,v t>0,

and therefore (C) implies that M - (Mt t> 0 is a '-valued

weak L2-semimartingale. This concludes the proof of (a).
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(b): Since I is a countably Hilbert nuclear space there is

p e a such that the canonical injection -L r -r is

Hilbert-Schmidt. Let q - minlp>r : 'r is

Hilbert-Schmidt). Let {+k : k e I) be a CONS in

consisting of elements of and let ifk : k e N) be the

CONS in Eq dual to {+k : k e v)

(i.e. f k'j] = kj V k,j e M).

- By (B') and Hilbert-Schmidtness of r we have for each T>O
q

CD OD

Esup (Mt )2 <k < E sup (Mt k))2

O<t<T - <t<
k-i k-i l <

OD

<CT Z12 <CD.<cT Z I k IIr
k-i

Hence, for each t>O, there is 4T e P with P(AT) = 1 such

that

ODsup \(tk,)2 < CD v u e a1T
O<t<T k-i

Let T ncD and put G, = T. Then P(GI) = and
n>l n

OD

v eG 1 : sup ( ( wt(llkl2 < "O T>O.0<t<_T/
-- k-i

By (C) for each k e v there is Bk e F with P(Bk) 1 1 such

that

• W .- ,V, ,.,., , ,.,, ' D , , . , . , . , -,, .,-,, . . , ,, . % . . , . ' . ,, . , . . ,, , , . .. . ., .. . . .
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t -M Mt(U")(+k) is CADLAG Vwe B k

Let G G G1f ) B Bk). Then P(G) - 1. Define
k>1

OD

t~))+kfkif we G

M ( - ; t>O

0 if wO G

Then M t w) e v w-e G VT>o.

Fix T>O and for n e v put

n

t(+'w)f k if we G

f n(W) k- ;t e [0,TI
(V if tv 0 G

By definition of G the mapping

t _3P fn (,) is CADLAG on 10,T) wrt. UN for every wC.t -

i e.

fn M (OT~ )

Moreover, using (B')

E sup IMt(Uw) - f nw)J2 <
O<t<T -

OD

EBsup 2i +
O<t<T -+

......................................
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CO CO

sup t(k, ))2 < CT

O<t<T k- +1
k-n+ - - k-n+

CO-: ft 2 < "
0 since l< co.

k-

By the Riesz-Fisher theorem there is UT e F with
P(UT) =1 and a subsequence f such that

,. nk

sup K4 - t n )12 ---- ) 0 V e UT.0<t<T

Since fn(,) e D([0,T],_q) ' n e N wV' e 4 this implies

that

?T(w) e D([0,T]; _) we &/ UT.
-q*

Now, let TnloD and put U n nl UTn. Then P(U) = land
n>1 n

t -* Mt(W) is -liI -CADLAG on [0,o) w e6 U.

Thus it only remains to show that

"- Mt) ' t>o P-a.s. ' * e 1:

Let + e 1. Then, for e G we have, for a fixed t>0,

-'f.

Mt(u)[+k ] - Mt(+k,w) 9 k e U
s wt

°,- so by CL) we get

,.,.< ' . . . . .. ,*' - - -- -- - - _ -=,t** . ,=_.** . .- . ... ** . . .... .. . , f .... , , *f , ' ftft , ,
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Mt[it)  Rt(*) P.a.s. V e 6 span{+k " k e 8).

By (L) and (B) 4 -> R t() is a continuous linear map from

into L2(4,F,P). Since also Mt is continuous on I and

since span{4(k : k e N) is dense in I it follows that

Mt[ =t P-a.s.

But t - Mt[+1 is CADLAG P-a.s. and so is t -> Mt)

Hence

Mt[ R] - Mt( ) V t>O P-a.s.,

and since + e I was arbitrary the proof is complete.

REMARK 7:

Suppose that (n(q) : * e }n>l are families of real

valued valued random variables each satisfying (L) and (C)

of theorem 111.1.12. and each satisfying (B'), but with

the same r for every n e N. Then, since for each n

q = min{p : r is Hilbert-Schmidt), we see that q can be
p

chosen independently of n; in other words there is q e v
such that

•n,T e D([O,T],Iq) (P-a.s.) ' n e 8 V T > 0.

• -
• "• "•- -" "'" , ".". : "". "" -"* ".*,. . •":"- ' "~~ "'."- -"-, ' - , "" ", ""," "- " ""-; " , ' '
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We shall now give an example which shows that one cannot

always expect to be in the situation discussed by Chari

and by Kallianpur & Wolpert, i.e. we shall show that there

exist i'-valued semimartingales which are not confined to

staying in some Eq for all t:

EXAMPLE

Let H be a real separable Hilbert space and let L be a

positive definite selfadjoint densely defined linear

operator on H and suppose that there is some rl >0 such
~-r1

that (I + L) 1 is Hilbert-Schmidt. Let be the

countably Hilbert nuclear space generated by (I + L); i.e.

4e H 11(1+ Lro V~c yr eR)

and for reR, fr= 1I-1lr-completion of where

II~llr ( J(I + L)rII, H; e .

Let p : [0,cD) -> [0,o,) be an increasing surjective

function. Then the mapping (t,s) -+ <+,+>p(ts) is a

covariance function for every 4 e . For each 4 e I let

St(0) be a real Gaussian process with mean zero and

covariance

EMt(4,)M(+,)
,.. . . . . .. ..s. . . . . . . ..>p(t.s).

S..•.. . . . . . .
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2 2 11*112) r e ).
(where <+,*> r = 1/2(11+ qIr - r - Pr

For each t>O let r(t)>p(t) be such that the canonical

injection P(t ) : r (t) -) p(t) is Hilbert-Schmidt. Let

qt : k e V) be a CONS in rlt) consisting of elements of

" and let {f t : k e 3) be the dual CONS in rlt)" The

particular structure of (as generated by (I + L) implies

that we may take

*; - *jill jilr(t) and ft =

S1 j 11 -r~t

where e : j e *} is the eigensystem of L and

1+j112 + j)2r r 8 R.2 r

Then, for any t>0,

E+t)2= \ 11+t 112 < ODL (M(k) L 1 1 kp (t)
k=l k=l

In particular, for every t > 0 there is 4t e F with

P(4 )  1 such that

_o0

"L (+, ) <co V 2e <D"t- k t
k-l

For each t>O define

.

.. t#, ~~. ...... . . . . . . . . ..".."...." " .. 4...'- .. .." ' " ' ...... "' "... ' ' ' '' '" . . ." ". ..
4. ' 44 .... ................... .................. ...... . -.

; - * * . / \ ; i *. - .* .. . . . .. .. . . . . .. 4..,". .'."-.----.."" .-'"----.
-1 ~. w *' -4. pr- i I I I '*I • -I - I ..- * .~. .>> - . % - I . . . .4I
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o

0 if 0 4 t

Then, for each t, Mt is a Lr(t)-valued Gaussian random

variable with mean zero. Since AT ') relativized to Lr

is equal to (Lr) for all r>O, (Mt)t>0 is a 1'-valued

random variable..Moreover, for + e I and ts>O

ZL<I~r~t<+,@k>r s)E(Mt(4Yl~s(4 k)) =

\ s @,
j1 k-i

j- - k=l

Now, r(t)>plt)>p(tAs) and

r (slp(s)>pltAs), so

- O CD
\ \ <4 +t> <. >

41ik_.1  < k>r) 4 >k p(tAS)

>P(jA5)D i.e.

EMt[+JMsIN ) - <5I?>pltA8)

. . ..--... . . . . i i i '" '
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Hence, for +,# e ! and tu>0

x Et[4Mst*1l -

1/2(E~tC4 + *IM8[4 + *1 - EMt[4]Ms[+JEMt[ ]sM10)

"-(14 + * 11pAS) - WiiMp(tAs) -II*I
2

" <+'*>p(tAS)

Therefore,

(28) V t>t2>t3>t4  + 4,I1 e 1:

E(M t [1  - Mt [+))(Me3[I]- Mt= 0.

Let Ft : {Ms] : e , 0<s<t)V(P-null sets).

Since EMt [1 = 0 V t>0 + e 1, (28) implies that

(M t[])t>0 is a martingale wrt. O t t>0 for every e 6

Since every real-valued martingale has a CADLAG version,

it follows that M = (Mt)t>0 is a I'-valued weak

L2-semimartingale (in fact martingale).

Recall that

tk - +k/llkgr(t) V k e x V t > 0

/

............... ........................ ~.. . ...-. *-.~. i i .. .
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and that

ft " k'rct) V k e n V t> o.

Moreover, (+k : k e ni is a complete orthogonal system in

"r for every r e R with 11 k11r ( 11 + ;Xklr; where

0 < < .< Ak t ac as k -) co are the eigenvalues of L.

Fix q > 0. Then for any t > 0:

OD

p 2 (I[+tg2 1ft (P-a.s.)• -. l t II_q ( t k,,. k -'i i q

k-l

OD (MtC +t]) 2

S, 1, 112 pkct flI-q
k=l k'p (t)

,a
_ ( + 2(p(t)-q)

k=l

Mtwhere Yk tII'I'kHp(t)

Since Mt[4l is zero-mean Gaussian with

tk]t[ k'j>p(t) kj 11k1p(t)

the Yk s are lID N(O,1). But Xk ), a) as k -c a, and p(t)

-) cD as t -) co so it is clearly impossible that Mt e

(P-a.s.) t > 0.

. . .•S. . ,. ,. . . , . , . . . . . . . . .. . - . o . - , . . . . . . ,

.. I. ., ... . .. . ... ,, -- . -- .. - .- --- . :. . . . .
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Our final objective in this section is to show that

nuclear spaces and generators of the type considered in

[141 and chapter II satisfy our assumption AS.1.:

111.1-13. PROPOSITION

Let H be a real separable Hilbert space. Let -L be a

densely defined closed selfadjoint dissipative linear

operator on H whose resolvent has a power which is

Hilbert-Schmidt.

Let f denote i' e countably Hilbert nuclear space generated

by (I + L); (see Appendix); let denote the nuclear

topology of i.

Then -L maps I into I and is -continuous and generates a

strongly continuous semigroup {Tt ; t>O) on [ satisfying

(a) TJ c-

(b) TtI1 is r-continuous on V t>O

(C) t - Tt is r-continuous V 4 e 1.

PROOF:
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Since -L is a dissipative selfadjoint closed densely

defined linear operator on H, -L generates a contraction

semigroup {Tt : t>0) on H (see e.g. A.V. Balakrishnan (21,

corollary4.1).

Moreover, since there is r >0 such that (I + L)-rl is

Hilbert-Schmidt on H, H admits a CONS {+j : j e N) of

eigenvectors of L; L+ . = Xjj V j where 0<Xi<.. <Sn<.

and Xn --- )- oD, and, by definition,
": n-)>oD

OD

e- (4 + : + 2r < O V r e a).

n

Let 4e ~,and ~

i-i
j-I1

n

Then *- in -and _LIn j<+,4j>Hj"

4.

Let r e R. Then, for all m>n

m

j-n+l

\ x ( 2r 2
Z_ J 1+ J) <+'+j>H <

"" j-n+l

" m

Ul + ,2r+2<++J>2 _3. 0, since + e .

j-n+l m,n-*oD

-4

.. -.-.-.-.. . . . ..- .- .... . . ... ,... ..... ;.-.', .-.-. . --.- ,., .*-. -. ' ,. '...., - .
" ,," " " '"" "-i "', 

, ",'%'"""" "€. .,"""" "4''""''.' . ,. ,%.' € ' ,-''"- • . • ""
"

.* ":' -, . ".-. * *%" " . . _ ,
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Hence (-LJn) T x-n f- OD A=- j ' j

in the topology of . But -L is I.H-closed. Since H

*, is continuous on (1, ) we get

OD

|= , - ,and hence for any r e R

CD

j=1

OD

(1 ~ 2 r+2 2
bqL.

U +1
xH

' -- 4. r+l"

Hence -LI c f and -L is Z-continuous on

OD

Next, with + e <, = < +j>Hj (converging in

.r V r) J-

we have for any t>O:

OD

Tt+ \ ejt<* +j>H~j, and for r e R we have

CD
ITt+12 7 e -2Xjt<+ 2 a+X2-o-

r H

2~ ~~~~ .'-- e-2.t ,)>( . . ..2r
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_ a, 2€ , 2r r'n2

\ <++j> 2 a + 2r proving (a) and

(b).

Finally, let 4 e and s>O. Then, for any r e 2,

OD

Tt+-Ts+r 2 (e-XJt- e-xjs)2 <++> 2 U + x 2r

j=l

00

<4 <+>2 + .2r

'i.- H H ~

4 4114112< C
r

and since t - e t is continuous V j e N the DCT gives

lir Tt+ - Ts,1 2 =0 r 6 CR.
t-s r

jj J WEAK CONVERGENCE

Several recent articles, including [141 and [41, have

investigated special cases of weak convergence of

solutions to I'-valued linear SDE's. A common

characteristic of these articles has been that the authors

were concerned with situations in which the limiting

process was driven by a I'-valued Wiener process (see

cqapter II for definition) and in which A is a closed and

.' .. ' ', . . .. - .. . . . .. ' . ... ° .. ,' . .... . " ' .' ',? ,... . , '. " . , .. ,.,, ,,., .". , ,- .*","t.* ",,,,, ."*-..,

_ . o ,,., -, It,.,d.v, ~ ~ ,llnn i l ll~ ,..
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dissipative operator on H. In addition each author has

operated with either a special sequence of noises ([141;

Poisson generated noise converging to Wiener noise) or a

particular nuclear space ([41; . Y'(3d )). In either case

their methods were designed specifically for the problem

in question and do not leave ample room for extensions.

Here we shall exploit the fact that our method of solution

in section III.1. has provided an explicit formula for the

solution to a linear '-valued SDE to derive a general

weak convergence result, which requires neither a special

sequence of noises nor a special structure of I and does

not restrict attention to the case where the limiting

process is driven by Wiener noise. Moreover, we shall not

assume that A ;s dissipative.

The assumptions appearing in our result (theorem 111.2.1.)

may at first appear rather abstract and perhaps difficult

to apply. However, as we shall see in chapter IV, these

assumptions together with a result of I. Mitoma [221

translate very easily into explicit conditions when

applied to concrete examples. One of the recent

applications of this subject has been in neurophysiology,

and we shall see in chapter IV how various results in this

field as well as new results may be derived with the help

of theorem 111.2.1..

Let M- (Mt)t>0 and Mn = (,n)t>0; n e N be I'-valued weak

L2-semimartingales such that MT :- (Mt)te[o,T] and

• - ~~~~~~~~~~~~~~~~~~. . . ....-. ..- ............. .. -...-....... ., ... ''.- ...- .--.-.

** *
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MnUT (Mtte[0,T] satisfy

AS,.. V T>03 A F with NA4 T) = 3 qT e so:

n e u : nT (w) e DI[ 0,T],IqT and
nT

MT () e D(I[0,T],_qT de AT

and

(29) sup E sup IInT II2  < O.
neM 0<t<T --q T

REEMARK 8

By proposition 111.1.6. and remark 4 (page 101) for each

T>0 and n e N there is q ne Iso such that

MnT e D([0,T],Iq n) P-a.s. V n e v

AS.3. therefore only serves the purpose of securing that

the same will do for all n e .

Let ln, be I'-valued random variables satisfying

(30) 3r1 e n : sup max(ElI r nI 2r ,Ell q r 2 < a).
new 1r 1r

Let )t>0 respectively _ n(ft)t>0 denote the

.P e* A AA
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unique solution satisfying (10) to

n= A' ,dt + dMn; Yn n

respectively,

djt = A'_Vtdt + dt t; ro

whose existence is guaranteed by theorem 111.1.5.. For

each T>O let, as usual,

n,T ,)-'~~ ~~ n,:=()te[ 0,T)

By AS.3. there is, for every T>0, qT e No such that, with

probability one,

MT,Mn T e D([0,T],_qT), n e x

and by an argument very similar to that employed in the

proof of theorem 111.1.4. it may be seen that this implies

that for each T>0 there is a PT e so such that

-nT e D(),TJf ) P-a.s. V n e i and

.. T e D(10,T ],I ) P-a.s.
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Recalling that the operator A is required to satisfy AS.1.

(page 58) we can now state the main result:

THEOREM 111.2.1.

Let M = (Mt)t>O and Mn = (M )t>0 satisfy AS.3. and suppose

that qnand J~satisfy (30).

Let T>0 and suppose that

Mn,T => M T on D([0iT),I-q a as n -o a

and that

n -1
P_(T')- as n -)- o. Then

n,T >T on D(OT]I ) a s n ->c)

-Before proceeding to the proof we need some lemmae:

Let T>0 and let VT denote the set of all real valued

functions defined on [0,T). Define a mapping G:

IxD(E 0,T) vIq T VT (qT is given from AS.3.) by

WzT
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G(,F) := v, e I, F e D([O,T],_qT) where

v(t) = t F [T A+lds ;  t e [0,T]. Then

(A) V + e I V F e D([O,T]p_qT) : G(+,F) e C([O,T],R)

(where C([O,TI,R) is the space of all continuous

functions f : [0,T] -+ R equipped with the usual topology)

(B) V 4 e • G(+,.) % D([O,T,I_q T C(COT],R) is

continuous

(C) V F e D([O,T], q) V te [0,T] : G(.,F)(t) e

PROOF:
-S

Let + e I and F e D([O,T],IqT). By AS.1. and

CADLAG-property of F wrt. "."q it is easily seen that
T

s -> Fs[TtsA+] is CADLAG on [O,t] for any t e (0,T]. In

particular, this mapping is integrable over [O,t] for any

t e (0,TJ and hence G is well-defined.

(A) Let + e1 and F e D(COT],I . Fix u e [0,T]. We

have to show that t 10 F Cs[Tt sA+ ] is continuous at u:

5,. Jt F5CTtSA4J JU P ET~ 5AIdsI

IJtu (FSCTt_ 5A4) F [5 T ... AJ)ds +0% S Io - +

* ,..- .
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tvusgn (t-TI) t~u Fs[IT tvu-s Aoldsj <

tAu FS[TtVU sAOIdsl <

t (sup II S s I )UT A - AII ds +

se[O,T] --qT
tvu
tAu (sup JFSI q) ITtvu-sA0 11 qds

S [O,T T T

(letting L := sup FSl _q , we have L < co by CADLAG-
se[0,T] T

property of F wrt. 11.1q and thus)

L 1[(Ot u](5s)TtsA A- TU-SA0J q ds +

t  u L ITtJ usA1lds

-The first term tends to zero as t -3 u by the DCT, since

for s e [0,T]

(s)IT- ---A+ T0 by AS>1. (c) and
,rt u1CS~ll t-sa - T-u AII t

2 sup UITt sA~ i  < CO, since0<s<t<T qt

(s,t) - T IITt.0sA01q T is continuous on

S . . . . ..
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{(s,t) : O<s<t<T) as a consequence of AS.1. (c).

-The second term also tends to zero as t -1 u, since

TI ilt u-s A+ilq T'.1[t u,t ul (S) <

sup lIT t-s A+ < o and since
O<s<t<T tT

tvu - tAU = It-ul.

This concludes the proof of (A).

(B) Let + e 1, and let Fn -> F in D([OT],Iq T Then

sup IG(,F)(t) - G(+,Fn)(t)I -
te[o,T]

sup If (F -F)[TtsA+1dsl <_
-. te[0,T]

q"sup fto IIFs -r II IITts A+I
F 8 te[L 0 ]-q T qTds

Now Fn -) F in D([O,T],I qT) implies that

(31) K = sup sup IF n q< O
nel O<s<T s T

(see e.g. (14.32) in theorem 14.2 of Billingsley [3]. His

proof for the case T -1 and qT - R extends without

change to T>O and any real separable Hilbert space).
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Moreover, convergence of Fn to F in D([OTI) q T) implies

that JjF n - Fs tends to zero at any continuity pointas -qT

of F. Since the set of discontinuities of

F e DI[0,Tj,1qT ) has Lebesque measure zero and since

sup t IIFs - Fil IITtA+11 ds <
te [O,T] 0  s qT tT --

(sup 11T A+1 11° llp n 11 ds,

O<s<t<T ts q - FsII _8

(31) and the DCT gives

sup IG(I,F)(t) - G( ,Fn)(t)I --- 0 proving (B).
te.[0,T n-D

(C) Let F e D([0,T]i§q ) and t e (0,T]. Then

G * > U(*,F)(t) = Jt Fs[TtsA ]ds

is obviously linear. Let +n - * in (j,C7) then for each

s e [0,T]

Fs [Tt sA~n] -> FsLTtsA ], by AS.1. (b), continuity of A

on i and the fact that F e f' V s e [0,TJ.

Also, + - T ITt-sA+1qT is continuous on I and therefore

f(s) - supTT-sA(+n -+)T < O V s e [0,T],
ne* I

and since s -J ITtsA~n)hIT is continuous for each
- ( 11

'-.'-.- -:'z..-',..':.z-.'.-v-.-,'" '.. .. •--'-' t,. . .- J,: -;V .9-T,;'
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n e Y, f is a lower-semicontinuous function of s e [O,T].

In particular, f is bounded on [0,T]. Hence

IFs[Tt-sAnl - Fs[Tt_sA]I <

IFsII-qTITt-sA(n q- *)HqT S_ lFs 11_q f(s)

e LD([0,TJ) c Ll ([O,t]) (recall that

s -> IIFIIq is CADLAG and hence bounded on compact

intervals). Therefore, the DCT yields

lG (+n,F)(t) - G(+,F)(t)I <

t IFsIT t- n ]- F sT t sA+]Ids --- + 0,
-.- n-

concluding the proof.

III. 2.3. LEMMA

Let MnT, MT be as in theorem 111.2.1.. Let T>O, and

K : D([0,T],_T) -q CC[O,T],R) be continuous. Then

TT

P (K(MnT))-l .> P (K(MT I )- I .

n-°,D
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PROOF:

Both D([OTILq ) and C([0,T],R) are complete metric

spaces, Po(MnT) ==> POMT )-1 by assumption, andN-.*o

K : D([0,T],Lq) - C([0,T],R) is continuous.

Hence the conclusion follows from (e.g.) Billingsley [31,

theorem 5.1. page 30.

Following I. Mitoma [22] (page 997) we say that a sequence

(Pn )of probability measures on D([0,T],I') is uniformly

k-continuous if

V e > 0 V f > 03 > 0 : Pn{X e D([0,T1,I') :

nn

sup IXt[+]I > e} < V n>l whenever "411lk <

te [ 0, T J ----

Similarly, we say that a sequence (Xn )n>l of

D([0,T3,1')-valued random variables is uniformly

k-continuous if Pn := P (X) -1; n > 1 is uniformly

k-continuous.

(D([0,T],j') is defined by Mitoma [221 and contains

D([OT, _q) V q > 0).

- -'-.a. 'a. *,%" ,. .- ,a. . ,." . . . .? "..-" ".;,:':', ... " -: : :*: . -- . -. :""" ""* " "" " " " "" ". "%". % "" " ' ( A " " ,' " %'". " % -" "o-- l=" "-" "' " .. ' % ''' - - - " %"
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Mitoma [221 (theorem 4.1 and remark (R.1.)) has proved the

following result which we restate for the convenience of

*' the reader:

THEOREM A (MITOMA)

Suppose that the sample paths of Y n, n>1 are in

DI[0,T],_p ) and that (Yn ln>1 is uniformly k-continuous

for some k>p. Suppose further that for every + e I the

sequence of distributions of Yn[] is tight in D([O,T],&).

Then (Yn : n > 1) is tight on D([O,TJtp).%P

Let T > 0, p > 0. Let V denote the class of sets

((x e D([0,T],I_p : x[] e A) : e 6 , A e A(D[0,T],R))}.

Then 6"1e) = (D[0,T],_p)).

,°-p

• PROOF:

Recall that the metric on D([0,T,I_p) is (see e.g.
m-p

appendix in [141) given by

d(x,y) - inf max(sup lix -: k, j eA T  0<t<T(t)T

. . . . .. . . . . . . . . . . . . . . . . .

.%, • "" .* ~ '. ".".' . . .. ". • ... . ,* " ...".. " a , *" .'e""" .'
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where AT denotes the set of all strictly increasing

surJective functions [OTI - [0,T], and where the metric

T on AT is defined by

x(t) - X(s)
ST(X,P = sup llog I.O<s<t<T P (t) - P(s)

Similarly, (see e.g. Billingsley, [31) the metric on

D([0,T],R) is

d Rf,g) - inf max(sup If (t) - g P(t) I (A,)

dX, eAT O<t<T

-It is sufficient to show that

V y e D([O,TJ,I_p) e > o-
r-p

(x e D[0,TIl_p) d (px,y) < e G

To do this, we first show that for any x,y e DU[O,T]_p)

we have:

(32) inf d_(x[+],y[+]) - d(x,y)
+eBC

where B = (4 e I - jI ip < 1) and I is a countable dense

set in 1p such that I I (recall that P is separable),

and where x[+1 denotes the function h e D([O,T),R) given

by

h(t) xt[ 1; t e (O,T].

....................... .............. ........................... ".'.. ... .....
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Let x~y e DC[0,TJ.L§).

Then

jflf d R(x[+Y+Iu4)=
OBC

inf inE maxisup- -
+eBC X, eAT 0<t5,T lxtlj-Y1

inf mEf max~sup IXxct)L0J -Yct[Iu'(e)

A DeAT 4OBC 0<t<T

Define f (+)=sp I

IA, *) t< = X(t)[0I - Yp(t)[+JI.

Baire's theorem implies that f is N.11 -continuous.

Moreover,

f 4I a) = Ialf JA, X(+) aeR. Hence

(33) inf cB f u AA W), so

inE d (x[+J,yC+])=
4+eBCR

inE mEf max~f I,\()~()
x, A eAT +e

mEf iax~inf Cf (~q),S ) (b (3)
x4eT eBC Y T(~ b 3)

inE nax(sup f A
X, OAT + eB
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inf maxisup sup Ix~)O -

inf iuax~sup, sup Ixct)[4d - Yp(t)LOIST(PuX))
x ,peAT O~t<T +eIB

inf max~sup iIXXct) -YPA(t)ILPPST (JA, )
X, i~eAT O<t<T

d~x,y), and (32) is proved.

Hence, for fixed y e D([OT],LE and e > 0

pp

{x 6 D([O,T],§- ) : infc d R(x[+i,y[+i) < 6)=

Ix 6 D([O,T],LP ) : infc d R (x[0]y[ J) > 6) C=
4QB~

c(x 6 D([O,T3,1- d :~ 1]y13 e d e

PROPOSITION 111.2.5.

Let T > 0 and q 1 0. Let {Xn : N e R) be a tight sequence

of D([O,T3,1- )-valued random variables.

Let X be a D([O,T]Ip )-valued random variable. Then

Xn ... > X on D(CO,T],I ) iff
n->-p

Xn[, 1+ -- > X[03 on D([O,T],R) V/ e
n4-o,
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PROOF:

Necessity follows from Billingsley [3), theorem 5.1. since

for each + e 1, the map H+ : D([O,T],L ) -> D([OT],R)

given by H+(x) = x[+] is continuous, and since both

D([0,T],_p ) and D([O,T],R) are complete metric spaces.

Sufficiency: Since D([O,T],_p ) is a complete metric

space, tightness of {Xn : n e W) implies relative

compactness by Prohorov's theorem.

Let P Y-1 be any limit point of {P (Xn)- I : n e N}. Then
{nk nk

there is a subsequence X : k e R) such that X => Y.
k-4c

Since, for each + e 1, H+ is continuous, this implies that

x nkt ;> Yt10 'V e I.
k

But by assumption Xnk ===> e •~k-+oD

Hence Po(Y[+1) = Po(X[+]) -  V 4 e

i.e. P(Y[4] e A) = P(X[4] 6 A) V R 6

o/ A e A(D[O,T],R).

By lemma 111.2.4. this implies that

POY PoX 1 , and so P.X - is the unique limit point of

"" " ' - , '-.• "- .;". " , . " " • " - '" • . -" " " - ;' " ". . . .. ". . "
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a (P.CXn) n e 8). But then, since (Po(Xn)- n e 3) is

relatively compact, we must have

PO(X -

(For if not, then there is a subsequence {nk :k e U) and

a probability measure R Id PoX 1l on D([0,T],I~ ) such that

P Xnk )-l -- > R, contradicting uniqueness of P X- 1 as a

limit point).

111..6.CORLLARY:

Let T > 0 and p > 0. Let XnX be D([0,T,L )-valued

random variables such that (Xn : n > 1) is uniformly

k-continuous for some k > p. Then

(a) x n ===> X on D([0 1T11,. )

iff

(b) Xn[,J1 =-=> X[+1 on D([0,T],R) v e

PROOF:

(a)->(b): Since D([0,T],I ) and D([0,T],R) are complete

* metric spaces and the map
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D ([O,T],I~ ) B x -)- x(+] e D([0,T),R)

is continuous for every + e I , (a) implies (b) by

Billingsley [3] theorem 5.1.

(b)=>(a): Since X n[1] ===> X[4O for every * e ~
{XnC+] : n > 1) is tight for each + e I and thus by

uniform k-continuity and the quoted theorem of Mitoma

{Xn : n > 1) is tight. Hence the assumptions of

proposition 111.2.5. are satisfied and the conclusion now

follows from proposition 111.2.5..

Now we can pro)ve Theorem 111.2.1.:

PROOF OF THEOREM 111.2.1.:

By corollary 111.2.6. we must show that

(i) For every + e I the sequence f- n T [+1 converges

weakly on D((O,TJ,Rt) to I (+j

(ii) 3k > PT \ e > 0o >0 3 > 0

P~sup n, T k
P[sIj > e) <Fwhenever 11+11kl

0<t<T

(i): Let *e ~.Then, letting y. denote the function

- . . . .- -. .. ..- .. .
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n,T1 1 = Jn[T.0] + MnT[+) + G(+,MnT)(.) and

* "Tq = [T.+1 + MT[ + G(+,MT)(.),

where G is as in Lemma 111.2.2. Let Qn (respectively Q1)

denote the measure induced on C([0,T],E) c D([O,T],R) by

fn[T.+] (respectively by q[T.+)) and let Q n

(respectively Q2 ) denote the measure induced on

D([O,T],R) by M.'T[ ] (respectively by MT[+J) and let n

(respectively Q3 ) denote the measure induced on

C([O,T],R) by G(I,Mn T ) (respectively by G(+,M T)) (recall

(A) of LEMMA 111.2.2.).

By Kallianpur & Wolpert [141, Corollary 3.1. (page 142) it

is sufficient to prove that

(iv) Qi => 0i as n -+ co; i = 1,2,3.

i = 3: By lemma 111.2.2. (A) and (B)

G(+,.) : D([0,T],_qT) - C([0,T],R) is continuous. By

AS.3. Mn'T, MT e D([0,T],j ) (P-a.s.). Since• , D( 0,Tl, qT
Mn'T T on) by assumption 0 n ==> Q by

M nD([0,T, 0 ) 3 3n-)*CD T N--oD
Lemma 111.2.3..

i - 2: Is an immediate consequence of Billingsley [31,

theorem 5.1. (page 30) and the assumption that

MnT => MT (the mapping K : D([0,T],_T) -* D([0,T],R)

given by

. . .. . . . . a a**~- -*-* *-. ft.* .*6
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K(F)(t) = Ft[+; t e [0,T)

is continuous and both D([0,TI,Iq T) and D([O,T],R) are

complete metric spaces).

i = 1: This follows from the assumption that n >

n->)-o
and Billingsley [3], theorem 5.1. (page 30), since for

each 4 e I the mapping H : Irl -> C([O,T],R) defined by

H(]) = h where

h(t) - 1[Tt+I; E r

is continuous ind both Ir and C([O,T],R) are complete

metric spacus.

This concludes the proof of i).

(ii): Since

[nT] = ]n[Tt4] + Jt M'TTts - A4]ds + M" T]

we get (using Schwartz inequality)

n'T [+] 12 < 3 1 .n[Tt4 1I2 + 3t Jt IMnT[Tt-A41 2 ds

+ 31M nT[bJi
2

• m - .o. o . °'."•
°

. . ,•.
°

.-. .. .. ° .. O - . O - • oO • . . . - . b . . ot

_ ,- d lm'd dkaM d~~i li~g ~ h m m . . . ... .. ... .. .,
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<_ 31 nTt,1I2 + 3t2 sp1 4 nT T A If2 + 3  ns T[_ 12

O<s<t

Thus

E sup ntnT[ ]1  < 3(E sup Irn[Tt+]12 +
O<t<T O<t<T

T2 E sup sup IMn'T[TtA]I 2 + E(sup I~t'T[+]12))
o<t<T o<s<t 0<t<T

3((sup IITt42 )Ell] nI1 2  + T2 (sup II Tt A II2
O<t<T r 1 0<s<t<T- ' q T

E sup 11 n'T 112 + E sup 1IMn,TII2  114112
0<t<T 0 q <t<T t -I 1+1

By assumption (30) E(11 r C 1  n>1 for some

C1 e [0,cx,) and by (29) of AS.3.

sE up I{ t I < < K < o ' n>1,' 0<t<T -qT

for some K>O. Hence

E(sup 1 nT[ ] 12) < 3(C sup Tt+2 +
te[0,T j 1 0<t<T 1

KT2 sup UTtsA 11 + KAJ112

O<s<t<T T qT

< 3(C sup ITt+I 2 + KT 2 sup JITtA112 + KI11+112

0<t<T 1 0<t<T qT T

Let g : sup 11Tt 11r2 and
0<t<T 1

(+) sup IITtA+1l2
92 o_<t<T qT

-- --- -. *.* ***I** ~
.. ............... .-.:....:..-:'-.':..: -..-,... .'-.. '. ,, :, '- .. . ,. ..*'.. ,,,,. . . .,. ,. - . .'" "",b~ * ".: ':. : ';?/:- .' ". :- :: ::- ';;:; : ':,.- :: ::::::::::
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Since t --> ITtA I1r is continuous on for any r > 0, gi'

i = 1,2 is a lower semicontinuous convex function of + e

satisfying gila,) = JaJ2gi(O) V a e R. Hence Baire's

theorem (c.f. proof of theorem 111.1.4. page ) yields the

existence of constants C2 and C3 and r2,r3 e v such that

gi() < Ci+ 111 12I, i = 1,2.r i+ I

Let k=r 2 v r 3 v qTv pT. Then

E sup I nT[@] 12 < 3(Cm'C2 + T 2KC + K)II2 V n>l,
<t<T 1 23

and thus by Chebyshev's inequality

°,n,

P(sup In'T [Oil > e) <.~o<t<T

C: - 2 3(ClC2 + T 2 KC3 + K)21 2

1 2I 43 k Vn>1

and therefore choosing 0< S2 < e2 (3C 1C2 + T
2KC3 + K)-1

nT
we see that n,T is uniformly k-continuous. Since k > PT'

this completes the proof.

REMARK 9-.,

Mitoma's result (theorem A) remains true if the spaces

D([0,TI_p) and D([0,TI,R) are replaced by,

respectively, C([O,T],I_) and C([0,T],R); see Mitoma

.j

o'P

" , .... . •. •... -................................................................... S- . %". "-P". '
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(221 (Proposition 4.1 and Remark R.1.). It may then be

seen that our theorem 111.2.1. also remains valid if the

spaces D([0,T1,Lp ) and D([0,T],R) are replaced by,

respectively, C([O,T,I_p ) and C([O,T),R).

Since the basic ideas of the proof are unchanged by this

!- substitution we omit the details.

-In order that theorem 111.2.1. be applicable we need to

be able to check whether MnT => MT on D([O,T],_).n->poD

Corollary 111.2.6 transforms this problem into a problem

of checking weak convergence on D([O,T],R) to which the

classical results appearing, for example, in

Billingsley's book [31 are applicable.

-Another often useful criterion for weak convergence on

D([O,T,-_ ) is the foolowing result by Mitoma ([221,

theorem 5.3.2. and remark R.1):

THEOREM B (MITOMA) :

Suppose that the sample paths of Yn, n > 1 are in

.D[0,T,_p) and that (ynln is uniformly k-continuous-(OT]Ip n>l

for some k > p. Suppose further that for every + e I the

sequence of distributions of yn[1] is tight in D([O,T],iR)

and for any finite number of elements +i''"".m e I and

points tl,...t m e (0,T) the distribution of

(Y~ n *1,.O..Y n + converges in law as n -), c to someS1 m
m-dimensional probability distribution. Then there exists
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the limit process Y whose sample paths are in

D([ O,T ],L such that Y~ ===> Y.

n-oIx

I d.I % 1

N]I o



CHAPTER IV

APPLICATIONS TO NEUROPHYSIOLOGICAL PROBLEMS

In this chapter we shall propose a new approach to

modelling neuronal behaviour by means of I'-valued SDE's.

We shall then employ the results of chapter III to giving

three particular weak convergence results which are of

interest for neuronal models.

Finally, we illustrate the application of our approach and

results by giving a rigorous treatment and investigation

of a model heuristically formulated and investigated by

Wan and Tuckwell in (30). But first we shall briefly

describe the neurophysiological context. For a more

detailed account hereof, we refer to [141 and the

references therein. In our description we shall follow the

introduction in [141.

4' VL~r r .- W. ..%
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A neuron is a cell whose principal function is to transmit

information along its considerable length, which often

exceeds one meter. "information" is represented by

changing amplitudes of electrical voltage potentials

across the cell wall. A quiescent neuron will exhibit a

resting potential of about 60 mV, the inside more negative

than the outside. Under certain circumstances the voltage

potential in the neuron dendrite will rise above a

threshold point at w"ich positive feedback causes a pulse

of up to 100 mV to appear at the base of the dendrite;

this pulse is transmitted rapidly along the body and down

the axon of the cell until it reaches the so-called

"pre-synaptic terminalsm at the other end of the neuron.

Here the pul- causes tiny vesicles filled with chemicals

called "neurotransmittersu to empty into the narrow gaps

between the presynaptic terminals and the dentrites of

other neurons. When these chemicals diffuse across the gap

and hit the neighboring neurons' dendrites, they may cause

the voltage potential in these dentrites to rise above a

threshold point and initiate another pulse.

Let 5(tx) represent the difference between the voltage

potential at time t at the location x e X (= surface of

the neuron) and the resting potential of about -60 mV.

As time passes, S evolves due to two separate causes:
(i) Diffusion and leaks: Depending on the nature of X,

the electrical properties of the cell wall may be

approximated by postulating a contraction semigroup (Tt)

T4

Cd A 6
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on L2 (X,-) where F is a suitable c-finite measure on X.

For example, if X - [0,b], core conductor theory suggest

the semigroup corresponding to the diffusion equation

-aft + t  (8,1 > 0)
at

with Neumann (or insulating) boundary conditions at both

ends. In neural material like heart muscle in which

electrical signals can travel more easily in some

directions than in others, the Laplacian should be

replaced by a more general second-order elliptic operator.

(ii) Random fluctuations: Every now and then a burst

of neurotransmitter will hit some place or another on the

membrane and suddenly the membrane potential will jump up

or down by a random amount at a random time and location.

It is believed that these random jumps are quite small and

quite frequent, making it reasonable to hope that they can

be modelled by a Gaussian noise process; in any case the

arrivals at distant locations or in disjoint time

intervals are believed to be aproximately independent,

justifying their modelling as a mixture of Poisson

processes or as a generalised Poisson process.

Because of the problem mentioned in chapter I that

stochastic partial differential equations may not have a

solution except in the form of a generalized process, we

shall model the voltage potential as a I'-valued

i:.' ' " '. .". .. .. . - i t .. .
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process, where I is a countably Hilbert nuclear space.

In [14J Kallianpur and Wolpert used a Poisson process

N(AxBx(O,t]) to represent the number of voltage pulses of

size a e A arriving at sites x e BCX (= surface of the

neuron) at times prior to t.

Here, we adopt the point of view that, in practice, one

can only "average" over the sites. Therefore it seems more

realistic to assume that the arrival sites are given by

"generalized functions" (distributions) e A C

rather than by points x on the surface of the neuron

membrane ) . As we shall see, this approach will also

offer the adv-,ntage of enlarging the class of possible

models.

To pursue this idea let us again consider a real rigged

Hilbert space J-- H_ Let B{(') denote the Borel

-field on ' and recall that B(') is the same whether

we use the weakly or the strongly open sets in 1' to

define it.

Let A e B(') and let, for each n e 3, n be a c-finite

positive measure on (RxA,B(R)x/(A)) satisfying:

The mapping: Qn : jxj -) R defined by

Q n,) =RxA a 2q[+]q[]n(dadq) is continuous on jxj.

. . . .. . . . .. . . . .. ; ."4 ./ .. "." . ."., ., . ', .% .' '. . . "..I."..f. ". . -.. " " .".x'A".":
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Let N° be a Poisson random measure on

(RxAx[O#CD);A(R)xB(A)xB([,o)) with intensity measure

Sn(dadJ)dt (a e 2, q e A, t e [0,oo)) (such a random

measure exists, see e.g. Ikeda and Watanabe (9], page 42).

-n n ,n
Let N (dadlqds) - N (dadrTds) - p (dad] )ds

and put

n JaxAx[OtaJ?[+Nn(dadJds); * e .

Let mn e J', and define

X" n(+ a real, +ADnAGt tmt+ ~4) ,e~

Then, for each + e 1, Xt (+) is a real CADLAG

semimartingale satisfying

n(+))2 = t 2mn[+ 2 + tqn(+,+).

Since Qn is continuous on jxj, the Kernel theorem for

nuclear spaces (see Gelfand & Vilenkin [6], page 74)

yields the existence of r(n) e 11 and C(n) > 0 such that

mn[,+ 2 + Qn(+,+) < C(n)M4lI 2  V 4 e .- r(n)'

We shall henceforth assume that the same r and C will do

for all n e N, i.e. we suppose that there exists r2 e N,

." *.*,*.*'?,P il ii i- il mlAi I .E*-i - I
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C > 0 such that

(1) mn[1 2 + n(,+) < cllIll2  ne N er 2

Then, for any T > 0,

Esup (Xt(+))2 < 2C(4T + 2T 2 ) 11+1 2 n
o<t<T r2

and therefore Theorem 111.1.12 and Remark 7 yields the

existence of q e N, q > r2 (independent of n) and a

n iq-valued CADLAG regularization Xt of Xt(+) e .
n,Tn

As usual, let Xt := (X)te[oT]; T > 0-

Let m e I' an let Q : x -) R be a continuous bilinear

symmetric f'..,ctional satisfying

(2) m[4 ] 2 + 0(+,+) < cll 1l2 -

A I'-valued Wiener process W = (Wt with parameters m

and Q is now defined precisely as in chapter II (see page

7) and Theorem II.1.1. (existence of I'-valued Wiener

processess) remains true for the more general I considered

here (with the understanding that the q in Theorem II.1.1.
r

must now be replaced by ql = min(r : tr is

Hilbert-Schmidt)). Henceforth W = (Wt)t>0 shall denote a

'-valued Wiener process with parameters m and Q.

JJ

~We may, and shall, choose q > r2 such that

. *
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XnT e D[O,T],Iq) P-a.s. V n e M V T > 0 and

WT e C([O,T],.q) P-a.s. V T > 0.

Let PT denote the measure induced on D([O,TILq) by XnT

and let PT denote the measure induced on

C([O,T],L_) C. D([0,TJ,_q) by WT.

IV.1.1. THEOREM:

Suppose that, in addition to assumption (1),

(3) Qn(~ e (+ V46
n--.o

(4) lira fRxAja~ ')In(dad ) = 0 e 4 6 .
": n-' D

(5) mn[4J --- m[4] V e 6 I"i n-),co

Then, for any T > 0, we have

P n
T > PT

n- oO

PROOF:

Fix T > 0. Let t1 < t2 < ... < tK e [0,T) and

' 6i ' l e for x en fixed.

We must show that

.. .. ~.~. -,.. i .... ili . .. " ' I..
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(X~ n K converges in distribution to, k K-
(Wt [*k])k=l

(ii) {Pn : n e m) is tight on D([O,T],Iq).

(i): The log characteristic function of

(X )K=l is:

K

C(al...aK) = [i z tkakm[,k] +

k=1

ST  RxA (eia [F(s)I - 1 - ia [F(s)]),n (dad)ds]

K

where F(s) : ak kS)
k. k1 O t k](S 4

k'
k=l

while that of (W ] ) =lis

K
C(al,...a ) i[*

1 K L k akm(k
k=1

"'S-- Q(F(s),F(s))ds]. Hence

ICn(a l , .. aK) - C(al,...,aK)I =

'..d..- .~. ......

... 5. - . . ,,;n,, l. * i i , hh~uolj.*. ...... . . . ... i . .. .. ..
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Ik k. ta(M [Ok1 - [L ) +

k=1

RxA (aW~s)) li1dadQ (F(s),F(s))-
p=3

K

k tkk [*qk] mC4 k) I +
k=1

0T jQl(,(s) F(s)) - Q(F(s),F(s))Ids
02

K

Ltlkllm[i VkJI +
k=1

J3n0' XA laq'[F(s)f 13,n (dad]q)ds +

T 1

0 _IQn (F(s),F(s)) - Q(F(s),F(s))jds

the first term tends to zero by (5). As for the second

term, use (4) to obtain

(6) lrn LRA laJq[F(s)1I pn (dadIq) =0

.......... I

v .~
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V e 6 [O,T].

Now, by definition of F(s)

K

IaT[F(s)lj ) J IaIjakII[[k]I V s e [0,T].

k=l

. *

Define ak ak sign(a [ k]). Then

K K

\ lal Iakllr [4 k]I = lal a*

k=l k=l

K

= laR[ L a kk]l

k-1

so

K

(7) IJI[s)II Iar( a * WI v s e 10,T].
k=1

K

But akqk6~

k=l

so an application of (4) gives

K
lrn JRxA jal?[ akI k]I(dadT ) =0

n-),oDk=1
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and thus

sup fRxA ja( a. k*kj 1,(dadq) < m
nebb k=1

But then

T RA p[ s)1, (dadqpds --- > 0
1 xlR- n->o

by (6), (7) and the DCT.

Further,

n--> c

for each s e [0,T] by (3) and since Q and Qnsatisfy(1

we have

In (F(s),F(s)) - Q(F(s),F(s))I :< 2CIIF(s)II2
r2

Moreover, (T fF(s) 11 ds < ac so the DCT gives
2

T Qn(F(s),F(s)) -Q(F(s),F(s)) ids --- > 0
0 ~n4 oc

concluding the proof of (i).

(ii) By Mitoma, [22], theorem 4.1 and remark R1,*(see

Theorem A, chapter III page 13S) it is sufficient to show
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that

(a) V * 6 : (Xn'[4] : n e N} is tight on D([O,T],R)

and

(b) 3k> q ve>0Vf >03 >O0

1101k < => P(sup IXn[+II > e) < V e e.' o<t<'

For part (a), by Billingsley [3) theorem 15.3 page 125, it

is sufficient to show that V e 1:

(ai) V o3 a > 0:

P(sup I Xt[+jl > a) < V neM

O<t<T

(aii) V e > 0, > 0 3 6 e (0,T) 3 no e Uf:

P{sup min{Ix([+] - Xn [+]IIXn  - x_[10 > e) <
t1<t<t 2  t I t2  -

.4

":p IXCn >no

and

:Pcsup IXn[+] -xn[+,l e) < n > no

a.. *. .. . . . . . . ...... ,-,, - - -' a ...
*~eo 6 a a'

" and
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P (sup XE n+ Ie< n>o
~ ~ ~ s ste[T-6,T) I5 - t4] ) ~ Vn*

Fix 4+ e 1, arnd let q> 0, e > 0. Then,

P(sup lXn4,Ij > a) < Xn[0]1up

* te[0,T) te[0,T]

.2

< 2 E(suP (t 2 m n+1 2 + Yn[,J))
a te[0,T]

2C 2 n + 2 T n , )
a2

< 2 (T2 +AT) CI4+I 12
a2 

(by 1)

< f or a 2 > 2-(T2 + 4T)Cjj,g

Next, let D:-{t>0: t1 zt<t and t2-t1 < ).Then

Pisup min{IXn[4,] _ Xn [+,3,IXn 4, Xn[4]I} > e
teD 1 t 2

< e- Ef sup min(,Xn(+j Xn [+4,,Xn [4,J _ Xnt+11 2

teD t 1 t2

< e2E( sup min(,Xnr4,] - [+]1I2,1lxn [+,] _-n+]2
teD i2t

2 2 n 2) n Esu12
< --min~sup MC ti) m (+] + splt

e teD teD 1

e-n -Z :S%
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sup ((t2 - t ) 2 m n+ 1 2) + Esup I Yn *J12

teD 2teD t2-

=2 2n+,2 + 4 ,qfl+))

2
- (0 + 4SCV 1 n > 1 (by (1))

er2

<D n e N f(2 S 2 12 1.
61 2

Further,

P(up~ IXn[+, _ Xn[+II e)

<-E(sup IXn[+, _-n -+
e2 s,te(o, t

< -- 2( S 2 mn(+] 2 + 4 Qf(+,+)) < 2(S2 + 4S)CH +112 n >1
e2 e 2

< ? n 6 n i~f S2 + 4S< (~2 .CD2 1.
qp6 2

Similarly,

*P(up ~ IXn[+l Xn[+]l ?, 6)

*< 2e- 2(S,mfl[2 + 4 Qf(+,+)) < 2e-2 (S2 +4S)CI +112
r2

Vn >

1? Vn 63if S2 2 -- CI+I

4S < _5__C
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Hence (ai) and (aii) are satisfied for+- 1ne2 -1}
S2 + 4S < (2 q-Ce-2C+r2 )-! and nO - 1. This proves (a).

(b): Fix + e I and let e,q > o.

Then P(sup IXn[+,I > e)
te[O,TJ

< e-2E(sup Ix n[+ 1)2
-te[0,T]

< e-22(T2m[+12 + 4TQn(+,+))

< e-22(T2 + 4T)ClI Ir2 < e- 22(T2 + 4T)CI+I2 (by M)
r q'

2~e

q - 2(T2+4T)C"

This completes the proof of theorem IV.1.l.

REMARK:

Note that conditions (3), (4) and (5) were not used in the

tightness part of the proof. Hence we have

IV. 2. PROPOSITION:

Let Qn,mn satisfy (1). Then, for every T> 0, the family

{Pn : n e W) is tight on D(0,T],L -;.
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Let A : -> be a linear and continuous, and suppose

that A and {Tt : t > 0) satisfy assumption AS.1. in

section III. For each n e U let = (,n)t>0 denote the

unique solution to

d = All ndt + dXntt t

,on

and let = ( t~t>O denote the unique solution to

dJt = A'T tdt + dWt

qo r 0

IV.1.3. THEOREM

Suppose that, in addition to (1),

(8) Qn(,) -> e(4 ~
n-* aD

(9) lim Jx/ a(]7[o]1 3 ,n(dadD) = 0 V e 6

n-)co

(10) 3 r 6 3: sup max(Ell Ej°112nI 2, < o and

nn=> on -r as n e

(11) mn~LJ --- > mil ' * 6 |.
. . . . . . . . .n-- f . * * *

- . . . . ..." 
* * *
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Then, for any T > 0 3pT e a:

.,nT " >-a T on D([0,T],LT

fl*oD P

where Pn,T (.t e [o,T] and

T =T (qt)te[O,T].

PROOF:

(1), (8), (9) and (10) imply that XnT -> WT on
I" n-),Gx)

D([0Q,TJiq) T > 0 by theorem IV.1.l.. Moreover, (1)

implies condition (29) of AS.3 in chapter III while (10)

supplies the remaining assumption of theorem 111.2.1.,

from which the conclusion is therefore obtained.

Next, we shall give conditions under which the processes

x n'T will converge weakly on DI[0,TIL§q) to a process XT

constructed from a Poisson random measure N on RxAx[0,OD)

in the same way as X was constructed from Nn. We shall

then invoke theorem 111.2.1. to give sufficient conditions

for the weak convergence of Tn,T on D([0,T],_pT ) to the

solution to the SDE driven by X.

.

Let m e 1' and let p be a 6-finite measure on

(3xA,(Rx$(A)) satisfying

%I-
...:-.,,....-.'",. ,-, . - " , .. ...,.,..,, . .,-... ...., ..... . ..,..,.- .. ....:- . . .,.- .. •-. . .- -. .- '. ' "." " '" -" "' -e"- " • . . " " •
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(Ila) m1+1 2 + B( +,+4) < Cg,l V4,er2

Ulb) JLxA leia[] - 1- iaT [+Jjip(dad] ) < c

where

B(4,,) :" JxA a2 q[+] 21(dadl?; V q) e .

Let N be a Poisson random measure on

(RxAx[O,ao),B(RxG(A)x([0,oo))) with intensity measure

,.p(dadJ?)dt (a e R, q e A, t > 0).

Define

Yt(+) = LxAX0,T] a] [+](N(dad]qds) - p(dad]?)ds);

t> 0; +, e 1

and Xt(+) - tm([] + Yt (+))

Since the r2 required in (Ila) is the same as that of (1),

theorem 111.1.12 (b) implies the existence of a

valued regularization X = (Xt)t>0 of {Xtt) : 4 G 1). For
each T > 0 let RT denote the measure induced on

D([O,T),_q) by XT = (Xt)te[0,T]* Then we have:

e-q
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IV.1.4. THEOREM

Let mn and pn satisfy (1). Let m,p satisfy (la,b) and

suppose that

(12) IRxA (eial[] - 1- iaI[+])pn(dad) --- >

n-)P00

jxA(eiar T - 1- iaq[+J)p(dadr?) V * e |

in
(13) m -- m[O] V * e +.

Then, for every T > 0,

mn

==> as n -> co

PROOF:

Fix T > 0. Since (1) is assumed to hold (Pn : n > 1) is

tight on D[OI,TI,_q ). Hence it suffices to show finite

dimensional convergence:

Let 0 < t1 <...< tK < T and *k e ; k 1,...,K.

N

Then the characteristic functions for

(xi nT 1* ,.0,X nT~, n
St[ KT[ ) and

-. *j .- *%*° . 4 . N- -- .o .... .°.. . . . . *. ° . , ** . °. -.. , . .. . . . . %. .: . °. ° o. ° . * *.-. , ,. b ° . ° o .* o % . "•""% " " o ° - , " . " . ' ." . - , ' " .-*% ".. .* * °. ° . °. *- .. ~*** ' . *- .-" *. " . . " *°...% " . . .
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(XTi [*1P..OX TKIYK) are, respectively,

C n(a1l ...ua K)

K-

exp imi n t

k=1

T (eX eiarIF (s) - 1 -iar cFsn' (dadrpd]

* and

C(ajl,...,a k)=

K

exP[imu I tJkaJ00 +
k= 1

JTO JRxA (eia '[F(s)] 1 -iaq[Fsn]IAdadqdS]

where

K

*F(s) \ a1
Z. k 1[,t kt~ )k

By (13) it is enough to show that

lirn exp[To JRxA (eaq - 1)
n-)CD3
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~iarIFnS)I~ n (daaads] =

exp[ (eX 6iaJ [F(s)J 1 - iaJ?[F(s)hz(dadrq)d]

now, F(s) is piecewise constant, i.e. there are

0 = s <...< sm= T and *2'. 4 Me such that

+j. if s e [si-11 si) j =1..t

F~s) +M if s e [s,_1 ,T)

Hence

(e ia 1[F(S)] - l aT?[F(s)])

M-1
(iar[]- 1 -iaql[4,])1( (S) +

(e M -(S)iJ~+M)[

[M-1'T

so

-T( iqF~) iafl[F(s)ip (dad ~ds=

M-1 alj

10[ Rx\ (e 1 -iar4,]n (dad )

a,~~. .* -. . ~ .* .* . .. .
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l~ j1,si)(S) + fLxA (e [M -

R. JxA (e -1 - iarq[4j])aV(dadq)(s~ - -
j=1

(by (12)

> . JRxA (e -1 - iaT(+~j)PV(dadq)

(S.j - sj-

(Recall that fRXA .. ~a is finite by CUb))

oJT , (e iaq][F(s)] - 1 - ia]?[F(s)1)V~(dadqpds,

concluding the proof.

Let Tobe a I'-valued random variable and let

(5~tt>o denote the unique solution to the I #-valued

SDE

d~t = A'1ftdt + dX t

%..-~-.-- -.. - .- '.
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q.

IV. 1. STEOREj

Let mn and gn satisfy (1), let m,p satisfy (lla,b) and
suppose that (12) and (13) hold. Suppose further that

2
(14) 3 r e N : sup maxoEI2 nII--rPEI °2r <  O

su> max (E11n 11-r"_n

and that on > on

Then, for any T > 0, 3 PT e K

n ,T > T on D CO ,T ,1 PT

where

= 5t)te[O,T].

PROOF:

Let T > 0. Recall that q > r2 is such that the canonical
injection 2 is Hilbert-Schmidt from -> r2  Let

{j : j e U) be a CONS in consisting of elements of .

Then note that

E sup IIXnTII 2
" <t<T -q

"- " . " ' " % ' ' ' ' ' ' ' ' ' ',' *' * . * * - *". "- "- " " - ' -"*" ". . .% * . ' " - ." ' - "' " " - '% " " "
. -."o".* ... •% .", % 2> •'.-;-, " ' ' .. " ",,"."-'._., .. "'" " - ".,, ., , . , .. .'- - .- . . . ,-
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O<t<T L -2
j =1

C,
nT,+j3)2)

j'lOct<T

Esup (xtnj,) <
O<t<T

j=1

.OD,a,

2(T m + 4 < (by (1))

j =1

OD

/ 2C(T 2v4T) 1+j1
2  =
r.2

j=1

r2.

2C(T2V4T)II 2 2 neq-"S V u,

(where I.IIHS denotes the Hilbert-Schmidt norm) i.e.

IIr.(29) of AS.3, chapter III is satisfied. Moreover,

xn'T,XT e D([O,T],Iq) (P-a.s.) by assumption and Xn and

X are -'-valued (weak) L2_-semimartingales. By Theorem

IV.l.4, (1), (llab), (12) and (13) imply that

X n'T==> XT on D([O,T],I-q). Since also (14) is supposed" n-)>cD

to hold, the assumptions of Theorem 111.2.1. are satisfied

and the conclusion therefore follows from this theorem.

-Next we shall give conditions for the weak convergence of
S.

".v..... ...-., *...:...... ...... :............;-. .. .. ......-: .. 4: . *.. b %......:..< . . 7 % ... ... ... .-.

," .' '. 2 ." "" ", 2 , '. ,' .'2 .' '. .' '.' '. ' '2 ', -, . 2 '2 
'.
" . . - . '. '. / ¢ ', .. ', '< r . '. . .. ' : . [ % ; . " " % _ ' ,' " % °% , '.- " .'%q
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a sequence Wn of F'-valued Wiener processes to another

iP-valued Wiener process W, and then employ these

together with Theorem 111.2.1. to give the corresponding

weak convergence result for the solutions to the SDE's

driven by W n and W, respectively.

Let, for n ew, m e' and let Bn :x It be bilinear

symmetric functionals satisfying (1). Let Wn = (W t)t>O

denote the I '-valued Wiener process with parameters n

n nand B . (1) and Remark 7, chapter III imply that W~ t C~

Vt > 0, for some q which does not depend on n e N.

IV.1.6. THEOREM

Suppose that, in addition to satisfying (1), Bn and mn

satisfy

(15) B n(~ > Qe')

(16) m n[ ] ___> m[+, V e ~

Then, for each T > 0, we have

W, ~> WT on C([OTI-Lqi

where W n,T .(W ne~,T and W~ is the #'-valued Wiener

process introduced on page /A
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PROOF:

We must prove that

V t > 0 {Wn ' T : n e M} is tight on CI[0,T],Iq and

V 0< t1 <1...<tN < TV e''''N "

(W. n,T N =>( ~l

t n->oD j Jul"

The tightness part is proved in the same way as the

tightness part of theorem IV.1.1.

Now, a calculation shows that

N
E exp(i a.W n ' T [1j]) =

j=l

N 1 N N
exp[i a -t jm ] - \  \  tjtkajakBn(4Jk)]

Jul 2~ ~

(by (15) and (16))

N N N
exp i tjajm[0j Z Z tjtk ajakB( j oL a-mi I 2 _L _ '

Jul j=l k=l

N

-E exp(i a aWT(1J)
jint

.Jul

.... *
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Letting qn ( ,nt~t> 0 denote the unique solution to the

SDE on

d n A Jdt + dWn
-- q

o ?n

and q = (]t)t>o be the '-valued process introduced on

page /63 we have

IV.1.7. THEOREM

Bn  mn

Let, in addition to (1), B and m satisfy (15) and (16)

of theorem IV.6, and suppose that ?n and q 0 satisfy

(17) 3 r e U : sup max{EIIJnllI2, EII .r < and

n

qn ===> q on I-r"

Then, V T > 0 3 PT e :

,n,T ===> qT on CQ0,TII_pT)f

n->cD

where 7 nT : , )tte[0,T]

PROOF:
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T  
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By (1), (15) and (16) and theorem IV.1.6 W nT ===> WT on

D([,T], _) V t > 0 where q = min{p : 2L is
-(OT]Iq p

Hilbert-Schmidt). Moreover (1) implies (29) of AS.3 in

chapter III and (17) supplies the remaining condition of

theorem 111.2.1 (recall Remark 9 of Chapter III).

As indicated at the beginning of this section, Kallianpur

and Wolpert ([14)] used Poisson random measures defined

via intensity measures on (VRx ,8(R)xB) where (X,8) is a

suitable chosen measurable space, rather than by

mean/covariance measures defined on (RxA,6(R)xB(A));

A e S(') as we have done it here.

It is therefore natural to address the question of when

Kallianpur's and Wolpert's framework is contained in the

one we have presented here. The following result gives a

(partial) answer:

IV.o.8. PROPOSITION

Let X be a C-compact topological Hausdorff space, and

suppose that elements of * are continuous functions on
Further, suppose that

(18) ; x eX --
"xe

,,,'where, for each x e , ix]s the linear functional on

. * ..",.- ,, ,, . . . . . .' . . ,' I " , , - - , ' -.. . ,
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given by

=,[ - (x) V 4 6 |.

Then, for any B c closed,

x : x e B) e ecI').

REMARK

The conditions of the proposition are satisfied e.g. for

= Rd and V = d.

Note also that a sufficient condition that (18) hold is

that convergence in the 1-topology implies pointwise

convergence for functions on

PROOF OF PROPOSITION IV.I.8:

By -compactness of * , there exists a sequence

K1 CK 2 C ... ~K n C . of compact sets such that

= Kn"

Let B c X be closed. Let An x : x e BIK n).

Since I : x e B) = n) A and G(T')is generated by thex n>1 n
weakly open sets in 1', it suffices to show that An is

weakly closed for all n e n:

... ". ..-. . --... 5. . ..- >'4 :--:''.. - "-'V.. ".-..... ... ... ::...: :.... i.....:-. .. i.V' : .;.;. :-*--: i..-
-. ;. .- - -- :"...'-'-'..v'.-.:'- .: .i..:-'-.-.: :-.-.-. ...- ,-.,.,-VN;-;-,--. '. .xV':, " ,, .-. ,-,- '''
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Let n e M, and suppose that (S l,.A is a net in An

converging weakly to some e 1'; i.e.

Since x e Knn B V aWe A and Kn (B is compact there is a

subnet {x : e} which converges to x, say, in KnOB.

Since each element of is a continuous function on X , it

follows that

, [i, = *(x) *(x) v e 1, i.e.

:~ ~ ~ i r + . , (x) ve

Hence = so An since x e Kn IB, and therefore

An is closed.

Taking B in the proposition, we see that

A e 0(j'),where A := {SX : x e ). Define a map

e : Rxkx[O,co) -+ RxAx(O,co) by

B(a,x,t) - (a,6x,t).

* - .* .. *'l * l .%I .- *,l *--I*lI i*Sfli i - | I *
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It follows from the proposition that

e i8 B(R)x6(A)x8([OcD))/8(R)x8(X )xi([O,aD)) measurable.

Similarly, the mapping r: Rxx -> RxA given by

. a,x) = (a, x) is

B(R)xB(A)/8(R)xB(* ) measurable.

So if mn e j' and P is a 6--finite measure on B)

satisfying

mn[,] 2 + ( < CII4rl n e is, where

n(+It) : x a2+(x)q(x)pn(dadx); ,*, e

and Nl (dadxdt) is a Poisson random measure on RxxC[O,OD)I
with intensity measure Vn (dadx)dt, then

Nn (dadldt) := N1n -I is a Poisson random measure on

RxAx[O,wD) with intensity measure

n n n -;A (dadq)dt, where 0 n 0 Z-

and Qn (A) :m J'xA a2 [ ]J[4]pn (dadq)

_ - ,x a2+(xin " .(dadx)
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Q1 (40 IV +,4 e I.

So that Qn together with mn ; n > 1 satisfy (1).

Therefore, under the conditions of proposition IV.1.8, the

Kallianpur and Wolpert framework can indeed be represented

in ours, and in this case their weak convergence result

(14], Theorem.3.2.) is analogue to our Theorem IV.1.3.

[Recall from Proposition 111.1.13 that the semigroup

{Tt : t > 0) with generator -L considered in [141 satisfy

our assumption AS.l in section III.]. However, one would

still have to verify the validity of the assumptions of

Proposition IV.l.8. for each of the examples given in (14].

11.2.

Next, we shall apply our results to giving a rigorous

formulation and investigation of a model recently proposed

by Wan & Tuckwell [30]:

In order to study the behaviour of the difference Vlt,x)

at time t between the so-called resting potential and the

actual potential at point x on the surface of an

infinitely thin cylinder shaped neuron which receives

synaptic stimuli of the finite spatial extent ei at each

of N sites xi, Wan & Tuckwell investigated the model

formally given by

A WA
,
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4) V 2 _N dWi

-- = - V + -- + \ h(x;xi'ei){(Vi( +/

) 4at dt( 19) imi

V(Ox) - 0 V(t,0) = 0 = V(tb); V t > 0,

where

h(x;xi,e i) = l(xi_ei,xi+ei)(x)

(xi,e i > 0 fixed for i - 1,...,N)

and where W1; i - 1,...,N are independent standard Wiener

processes. o(i and/y i represent input current parameters

and the neuron is thought of as the interval [0,b]; for

some b > 0.

To see how this model can be given a rigorous

representation as a i'-valued SDE, let H = L 2([0,b]) with

inner product denoted by <.,.>H. Let L denote the operator

I - A (A = Laplace operator in one dimension) with

Neumann boundary conditions at 0 and b. Then L is a

densely defined positive definite selfadjoint closed

linear operator on H and admits a CONS

+j • j = 0,1,2,...) in H consisting of eigenvectors of L;

L+j - j = 0,1,2,..., where = 1 + - and

b-1 / 2 if j- 0

*jCX)

. -:,: .... . .... ... .... . ......-:. . :: .... : .-... ...... . ., . . .:-.....-,.,; . .. -: .. 2 ., ,-:.,.-,, ,.
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2 1/2 jrx(-)i/2 Cos(-) if j > 1.
b b

Further, A := -L is the generator of a selfadjoint

contraction semigroup (Tt : t > 0) on H whose resolvent

R(X) = (XI - A) - 1 is Hilbert-Schmidt on H.

Letting

:={ H :II(I - A)r+IIH < Co r e it}

and defining norms -r r e it on | by

II+Ilr := 11(I - A)rIIH; + e

we put Ir equal to the II-Hr-completion of 1.

Then = r' Ir and if r denotes the Frechet topology on

I generated by {1.'1r : r e R) (i.e. the projective limit

topology on 1}), then ( ,r)c-,Hc->' (where I' denotes the

strong dual of (J,r)) is a rigged Hilbert space. Since

A = -L, and L is a densely defined positive selfadjoint

closed linear operator on H we see from Proposition

111.1.13 that A and {Tt : t > 0) satisfy AS.l of chapter

III.

Moreover, {j : j e R) -- , e- Domn(L) and per

construction of I every element of I is an infinitely

differentiable function. Let N e 1 fixed, and for each

i - 1,...,N let e l'. Let Vi; i - 1,...,N be -d-finite

•. ,-", "" ."". ",' ... , '. '."."." ."-. -" ."'V ,,." o"-. "" ."", "" ."". "" .',-. "'.'.I' " "" ."-. ". -" ."". -" .""," .' ".."-. ." ."- . '*. " "-.
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measures on R satisfying

a 2V 1 (da) < o V

and let p be the measure on RxA, where

A { : i = 1,...,N), given by

N

J i ; where is the point mass atg.

Define

SfRxA a 2 J [ ]J[l[Jp(dadq 1; ,*, e

N

i=l

then Q is a continuous, bilinear symmetric functional on

1, so for m e I' given, let W = W t be the '-valued

(actually I-, valued for some q e N o6 c.f. Theorem
-- q

111.1.12) Wiener process with parameters m and Q.

Consider the SDE on

(20) dT t = A' tdt + dWt, 1 o = 0

Now, W is. a weak I'-valued continuous L2-semimartingale,

and since A and {Tt : t > 0) satisfy AS.l there is a
unique continuous '-valued solution (from Theorem

.. . . .. .. . - .-.. - .. ~!c A
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111.1.5 and Remark 6) given by

t(+ It W [Tt.sA+Ids + Wt[+] V+ e

(with probability one).

Choosing 3i = <h(.;x i 'e ii)p>H 1il ,...,N and

-N
M m=me: 2 JR a 2 --di(da),

(20) is the representation of (19) as an SDE on i'. To see

that this is indeed the case, expand

OD

Z- <+'+j>H +j (converging in (f,r))
j=0

(recall that +j e V j e N)

Then (writing ] orfor and t

O

Wh~ 5 (f ++~>~j=0

(converging in L2 (4(,F,p)).

Define for x e [O,b] and n e u

n

.. 0

"n to - )°- J't-s) e e
-\ ( A-i e W [+jIds +W li+JX

Jo '
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Then, noting that sup I~(X)l 2 (..1/2 vj > 0 we
fidxe(0,bJ b

(21)~~ ~ ~ E 4fXj [jlds +

j=00

j= 0(xll~~xb

Ti ~ ~ --\. (t-S ) /

<\ El Ct -e I W(eE-s)d + e 2 ( s)1/2~ I2 /

4- )o me iS 10 b
j =0b

E sp/I [E( e (ts)e +jds +WeIili( l
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o dW sly)]

2- 1/2 7 t e- m[OS)s 2 +
b 4, L)10

j =0

2XQeS 1/2t) :

2n -
(-21/2 \;- I(0[j]2X((F -2j-eJ j2+
b /. [me J

j=0

1 -2X *te 1/2

2X .

IT)i

but X. + i
) b2

N

and me[j) L i<h(.;x. e Gi)IOj>H

i=1

20i e(bCS jIx for j 1

N

2(r j=0 frj.

21/ bT j -

i-i

St~~ ~~ %



186
I N

* .2b--i2 \
2l 1,iei I for j = 0
i=1

Also, for j > 1

N +e 2
\ 'j 2 F~ii ()1/2 COS( X 12

) Le b C) S

8b N

(recall that 2 R a2 (da))

while Qe (oo ) < i 4e-

so

I [m6' i2X-2 (1 - 2
j=0

1 -2Xjt 1 /2
( - e e j

2X.

n N 2.2

< CONSTANT + _- 8_ \- _-- 2 (1 +-2

+ -2  8b N 2

7Z

"'" '-','"''.".'," '" ''""'. .", - "."'- """\' "" ,' , "",, .""." .",,-".-2 ]" " ""''."- ' ",
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< Go n e u,

and combining this with (21) we see that the series

Go A(t-,) e ]iijxi

sup oto - X)je W [jlds + WiIyjlX)I
o<x<b

is convergent (P-a.s.).

But then the sum defining V (t,x) is absolutely convergent

for all x e (Ob] P-a.s., and hence

Ve(t,x) - lim Vn(tpx) exists for all x e (O,b) (P-a.s.)
n-,oD

for each t > 0.

Moreover, there is a constant C - C(tw) such that

sup sup IVnlt,x)I < C (P-a.s.) V t > 0.
neN O<x<b

Therefore, the DCT gives

<vt,.,,>. --- )I <ve (t,.),>H P-a.s.
n-),oD

for each t > 0 and each + e .

But <v nt,.),,,>. -

ft° H

%'S* *~* ~ ~
"o.5 s

5
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7 (t W [Tt_ BAjlds + We, <'j>H

L 2 (.a,F,P)e
->f------ > e 1, so

<re~t0.,,,>a - W-,.1

for each + e i and t > 0.

To complete our argument that the process given by

Ve(ttx) -t e D [Tt 5 A~j)ds + we[+J]]+J Cx)
j-0

44 V x e [O,b] P-a.s.

is the rigorous representation of the process formally

given by (19), let us see that EV (t,x) and VarV,(t,x)

actually agree with the formulae found in [301 by a

heuristic argument:

First we note that a simple computation will verify that,

for each x e [O,b] and t > 0

Vn" ) L2 1 fl,F,pI
Vet,x -------- >Vetexn-)ocD

Therefore, we get

*~~~~~~C - . *.* d*'4- -
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EV (trx) z (I >JW[T,_.Ajldo + V [ij)+j(x)

4

- e J dW5[*j]+j(x)

(to e mtt5u(jlds+j(x)

- i)+j (X)

N v +(X) 1 x; ei) (1-

.2i-i 3' 0

which is formula (8) page 279 in Wan &Tuckwell [301.

Here, as in (301,

*j (xi6ei) <h.xte-+>

(x +e1

- x,-e1 +xdx.

.F Next,

OD CD ACt-s)-
Vare (t X) E - e j dW5[~

vekZI .
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e-klt-S) -

edds[kfJm(X)+k(x)

= elJ+k (t- s ) dj

~ o, ~)+Jk,+k~x )x)+ kxCx)

CO CD (X

Y. kL., 1X -- + )

N

i (J+)k

which is formula (10) in (30).

Wan & Tuckwell proceed to compute the limit as ei -) 0

V i 1,...,N in such a way that eio i -) a, and

ei i - bi > 0 of EV(tox) and VarVe(t,x), and they find

that these limits correspond to having point stimuli (i.e.

h(x,xi,e i ) replaced by Cx)) at each of xi; i
i

This result may be obtained from theorem IV.l.7 in the

"- following manner:

.or each i - l,...,N take Vi - bieTlpi; where pi a is

finite measure on R with compact support.

:A7

.9.
L

.. . .. . .'.'o , ,. .,, .. .... , .. , . ,,, .. , ,, .. ,._ . ,_, .- .. ,* . .. .. -. .'- , , ,
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Noting that every * e is a continuous function on (O,b)

(recall that I c Dam(L) and that L is a differential

operator) we let i - 0 in such a way that eidar -4 ai.

Then

N

lim Me 1rn lim n<h(;xi,ei),+>H*e-.O- el-.° i-i

N x+
- lir o'jf ((x)dx

Si-l i-e i

N

Z 2ai+(xi)
i-1

N

= 2ai x+

x i-

and

N xi+e

li O Qe"O lin ' 2( i -i (x)dx)2

N

-oe

-lim \' b 2 e 2 ji i x)dx)2 JaPda
S4/ -i i Xi-e 1

* N

4b 2 +(xi) 2Ja 2i (da)

- ... .. .. . . , .. . C . , ... -.. .... . . . -, "." - " "-" -" " ." .:- ' C' " . . .''" " " ' - ,. , ' ''
,,.. , .. , J • , % . .,., ,,, . . .. # . . .- ,. -. - .-.- ..C - : * %. % w.. . .. . .; - , -
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N

-1 4b 2(S. [+j)2J a 2 P(da)19

Also,

Ime[4 ]12 + e(+,,) <

N 
N

N N
* ( 2e I (I + 4i211a,

*
D
" < CONSTANT II 112 v ei,

since e ioe - a i and e i -) o; where CONSTANT is

independent of ei, so condition (1) of section 1 is

satisfied. Since the initial condition is zero, theorem

IV.1.7 yields

e,T ... > q Ton C([O$,T],L ) V T > 0

for some 9T > 0.

" Here, - (Iltt>o is the solution to (20) for

N

4b [2S and
.. . .. . .a.. .'' ... .. .... .. .'. -

! ::,. ',:.-:.-..z .- .':,.,g>;:',:'..' : ..-.- ....,'...--.-.-.'..-.. -.. -'..- .- ,'+"....**~ . , **.- ,', ,+'. .. a, -' .**,,
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2ai&s i.

NOW, take fRa2 li(da) -1. Then

N Yj(
EJ'tC1 7 2a
qt1L (1- )i *e

and

N 00 a
Varq'tl~1 = 4b?~ <+' JH+IkHJ X )k~

iiJ-0 k=OX+Xk

(1 e -( J+ kt

Sic=~~)7 t~ljx (in L2 (A, FP)

we get

N cO+X
(22) BV(tex) = 2a 7- (x( - 3

Z- i /- X JU

and

N CD aDL(

(23) Varx) - 4b2 7 7- Yxi+kxi*

J= iO k=O ~j + X

(22) and (23) are the expressions found by Wan &Tuckvell
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for point stimuli at xi;i -

In practice, equation (20) is likely to arise as a limit

of equations where the noise is not a Wiener process, but

rather a process generated by a Poisson random measure in

the manner considered in section 1. As an illustration,

take Vn to be measures on RxA; where

A -{i : i - I,...,N) of the form

N

,~n V n x where
ii

for each n e 8 and i - 1,...,N Vn is aC-finite measure

on R such that

sup a21In(da) < C < co V i
neln

Let mn e 1' converge weakly to me. hen there is r e no
such that

Imn[l+]1 2 < K1+112 n Un.

And since

Iqi[+] 12  < (2ei)2np llo -<r2i210

we get

* 6*** .. *.'..~- - .- . .
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lanl:]12 + Qn, ) =

1mn[]j1 2 + a 2J-V da) i[+])2
i.-i

CONSTANT II fl2 n e 0; i.e. (1) holds with r r.

r2
n

Let X; n > 1 denote the I'-valued processes constructed
I -

from mn and pn on p.5-.

Letting n denote the solution to

n _L' n + dXUn
t t t

Yo.

Theorem IV.l.3 gives the existence of PT such that

n,T e,T
n, " eT on D([O,T],.pTL

n- co

provided that

(24) lrn JR lalI)~da) -0 i-

and

(25) lim a 2 , (da) 2 i ,
n-*(3D

i.e. the previously considered process can be thought

d

Ja . e , *. . , ~ . • . - . - . - - '. - - . . ' ' -' . '.. . r.. . . ' ' * .' ' .- " ' . . . . - '. ' . . , . . - . - . ' . . , . " .' -' . . . • . . "



196

of as the limit of solutions to SDE's with Poisson

generated noise.

Physically, this type of weak convergence can be thought

of as a situation in which the individual current stimuli

of the neuron arrive very densely in each small time

interval so as to create a total contribution to the

electrical potential which behaves like the continuous

Wiener process.

On the other hand, if (24) and (25) are replaced by

iy -Vna
lim (eia -l - iay)V 1 (da)n->31o

R(iaY 1- a)
( -- iay)-V(da) for all y e it

fR1

then theorem IV.1.5 gives

,T ===> ,T on D([0,T],IpT
n-)-oo

where is the process with mean functional m6

constructed from the Poisson random measure with intensity

N

This latter convergence can be thought of as modelling a

situation in which the individual stimuli received by the

neuron do not tend to arrive very densely packed in each

I . , . ,- -. .... ... .. .. . : - . ..-..-.-. . .. .- , ..:.-..-.. .,.. ... ,. .-., ,- :, ,, , ,,Zr!,,-
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small time interval, but rather tend to arrive clustered

at random points of time.

-Let us conclude our discussion by briefly summarizing

what we have obtained:

By proposing to represent the arrival sites of the stimuli

of the neuron as diitr~butions e ' rather than by points

x on the surface of the neuron we have given a rigorous

representation (20) of the Wan & Tuckwell model (19) for

the behaviour of the electrical potential in an infinitely

thin neuron which receives stimuli of a spatial extent

described by the distribution fi = <h(.;xi'ei)''>H at each

of N points. -We wish to emphasize that it is not possible

to incorporate the Wan & Tuckwell model into the framework

used in [14J.

We have then exhibited the solution as a I'-valued

eprocess Rb, with the interpretation that for suitable

testfunctions + (describing our measuring device) e[1]

represents the measured voltage potential difference at

time t. We saw also that for the Wan & Tuckwell model the

electrical potential Ve( t,x) is well-defined at each

point x of the surface of the neuron and Ve(tx) is

related to t by

t f Ve(,x)+(x)dx (P-a.s.) ' t > 0.

---------------------------------------------
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By means of Theorem 111.2.1. (disguised as Theorem

111.1.3) we then saw that e can be thought of as the
limit in distribution of processes driven by

Poisson-generated stimuli, and further that (as was

heuristically obtained by Wan & Tuckwell), as e -) 0 in an

appropiate manner, e converges in distribution toJ~. tothe

process T., which describes the evolution of the

electrical potential when stimulation occur precisely at

the points xi;i = l,...,N, of the neuronal surface.

Moreover, Theorem 111.2.1. (in the form of Theorem

IV.l.5) permitted us to give conditions under which the

solution for Poisson generated stimuli would converge to a

process still driven by Poisson generated stimuli.

It is our hope that we have hereby illustrated that the

proposed approach of considering the arrival sites as

given by distributions (rather than by points on the

neuronal surface) together with Theorem 111.2.1 and its

consequences, provide a framework and a tool which is

ample and powerful enough to permit the analysis of many

aspects of the neuronal models.

For more general models of neuronal behaviour than (19),

it may be of interest to estimate the mean functional m

(which represents the mean arrival rate of stimuli) as

well as testing hypothesis about m.

The results of chapter II should be useful in this
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situation, vhich ye hope to investigate in the future.

-- 7

.

.
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Let us briefly recall the definition of a countably

Hilbert nuclear space:

DEFINITION

Let I be a linear space upon which a sequence of real

inner products <.v.>n; n e N is given with the property

that for all nm e N we have:

If 40i(% I is a convergent sequence wrt.
.1/2 in he

:- <000> , and IkCD is Cauchy in m , then
n and iCD

{+k)j=l is convergent in f-nl -

Let 'r denote the Fr~chet topology on I which is generated

by the norms "*Hn; n e R.

Then I is called a countably Hilbert space iff (for) is

-*o complete.

(note that (r) is metrizable by the metric d given by

d(€,$) = 2-n -n *,4ie .
L 1+ - *11n
n-i

(lo) is then complete iff (Id) is complete.)

Let (1, <.,.>n : n e 2)) be a countably Hilbert space

and let 11 :- . 1/2 Then we may, and shall
.

9. henceforth, assume that

d MNi Im n < m, V€e .

.
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For each n e 8 let denote the completion of wrt.

I*AIno Then In m > nand - C) n In'
n>l

DEFINITION

A countably Hilbert space is called a countably Hilbert

nuclear space iff we have

V ner3 m>n

the canonical injection ' : is a Hilbert-

Schmidt operator.

Let §-n :- In denote the strong dual of the Hilbert space

in and let 11-11-n denote the Hilbert norm on 1-n. Let 11

denote the strong topological dual of 1, where I is a

countably Hilbert nuclear space. Then

= " -n with the (strict) inductive limit
neu

topology.

Moreover, on either I or I' a sequence is weakly

convergent iff it is stongly convergent. The 6-field

generated by the strongly open sets in I' is the same as

that generated by the weakly open sets and it is therefore

unambiguously called the Borel c-field of 1', and

denoted 1'). We refer to Gel'lfand & Vilenkin [ 61,

chapter 3 for the proof of these and other properties of

countably Hilbert nuclear spaces.

4N
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DBFINITION

A triplet c H c.-> IF' where

i) is a countably Hilbert nuclear space and ,' is

the strong dual of i

(ii) H is the completion of I wrt. an inner product

<',,>, on I which is continuous in the -

topology

is called a rigged Hilbert space.

9.

A linear topological space can be a countably Hilbert

"- nuclear space even if its topology at first appears to be

generated by more than countably many seminorms:

Let I be a linear space upon which a family

{<IF°>r : r e R) of inner products are given with the

property that

; 14I;lit < 14+ls 'V'r,s ef v e |

where Fr c<4*>) 1/2 V + e |.

Let 0 A A-Ga be any subset with the property that

(a) Vrea 3seA: s > r.
%
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Let r denote the Fr6chet topology on induced by

A-I r : r e R} and let rA denote the Fr&chet topology on

induced by 1 I8 : s e A).

n ifr n f andTA Z
reA reR

where fr : = I " r -completion of .

Moreover, if

(b) V r e m 3 s e m with s > 0: the canonical

injection -s : is -> fr is Hilbert-Schmidt

and I - rl ir
rem

then I is a countably Hilbert nuclear space and r- rM

PROOF:

4.

q"" Clearly, nrcr
rea reA

Conversely, let 4 e n r" For a fixed t e i, pick
reA

-'. S e A, s > t. Since

11t~ <- 11 'v"e we have -- t

,. ., , , . P. P.- • 4 . , .. , .. .. . . . .. - '..- . . .*,.- * ,
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But * e ( 'r > + e t, so et.
reA

Since t e it was arbitrary,

/Ir C n Ir"
reA reR

Next, the class of sets

CA : { {* e I : '41r < ei, i-l,...,k):

k e 9, ri e A and ei > 0 V i-l,...,k)

forms a complete neighbourhood base at zero for

while the class

-I
; ' ~~C:- (+{ e I " 1+11lri < ei i-,.,}

k e g, r i e 3, and ei > 0 V i-l,...,k)

is a complete neighbourhood base at zero for C. Let F e C.

Then

F - 1 1: 1+11r < ei, i-l,...,k) for some k e u, ei > 0

and rj e i.

By (a), for each i-l,...,k we may choose s8 e A with

a, > ri. Then, for every e 1:

I lr <_ I , and hence
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F q'{ e 1: llill8 < ei  V il,...,k) e CA'

i.e. every c-neighbourhood contains a '-neighbourhood,

i.e. every r-open set is rk-open, so r is weaker than

rA. Conversely, CA e C, so every s--open set is C-

open, so CA is weaker than C.

Finally, if n r then I is necessarily complete,
rem

hence countably Hilbert, and therefore countably Hilbert

nuclear by (b). r - E"m follows from the first part of the

proof because N satisfies (a).

- An important class of countably Hilbert nuclear spaces

is constructed in the following manner:

Let (H,<.,.>H) be a real separable Hilbert space and let L

be a densely defined selfadjoint closed positive linear

operator on H satisfying:

-2r 1

(c) 3 r, e R: (XI + L) is Hilbert-Schmidt on H

(c) implies that there is a CONS (+j: j e m) in H

consisting of eigenvectors of L; LOj - Xjj v i e m.

Define, for a fixed X > 0,

O

e2r <O VreR

* i.e.



- -. 206

iF~ H =| ,l(XI + L.) 211 < COo r e it)

For each r e it define an inner product <,,,>r and a
seminor. r on I by

r 7 i4 +j>H<*+Jj>HCX + X)2r

and

Let Ir denote the Ir -completion of I and give I the

Fr~chet topology induced by (l1 r -re R). Letting

denote the strong topological dual of I we have

M I "r; I' Ir with the inductive
reR rea

limit topology.

(ii) lMr _ I Ms V * e I and consequently Ir Is

Vr < s.

(iii) V r e : The canonical injection -s z

to ") Ir is Hilbert-Schmidt for every s > r+rI .

(iv) For r > 0 Lr and 1r are in duality under the

pairing

a . -.--i:
s

N . .. ~ & .~*.**..~* %~
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I?(4d - rq,+j'j>-r<+'+jr e -r e .

(v) H.

(vi) (+j: j e N) is a complete orthogonal system

in Ir for every r e R with lfl - C + J) r

for each j e *.

(vii) -2rl

(v) + \.) < 00.
j=1

Theorem Al together with (i), (ii) and (iii) imply that

is a countably Hilbert nuclear space. We shall say that

is generated by (I + L).

- The Schwartz space of all rapidly decreasing functions

on Rd is generated by (1/21 + L), where

jxj 2
L = - A. -See K. Ito [1o1 for details.

4

Let CO.,F,P) be a complete probability space. A I'-valued

map on 41, which is 6('1)/r -measurable is called a

valued random variable. A I'-valued map q: Ix4 - '

where I R is called a (stochastic) process iff

qt: 4 "  ' is a 1'-valued random variable for every

t e I.

.. M..

. . .. . . . - . -
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